Radial periodic perturbations of the Kepler problem

被引:0
|
作者
Alessandro Fonda
Anna Chiara Gallo
机构
[1] Università di Trieste,Dipartimento di Matematica e Geoscienze
关键词
Kepler problem; Periodic solutions; Radially symmetric systems; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider radial periodic perturbations of a central force field and prove the existence of rotating periodic solutions, whose orbits are nearly circular. The proof is mainly based on the Implicit Function Theorem, and it permits to handle some small perturbations involving the velocity, as well. Our results apply, in particular, to the classical Kepler problem.
引用
收藏
页码:257 / 268
页数:11
相关论文
共 50 条
  • [1] Radial periodic perturbations of the Kepler problem
    Fonda, Alessandro
    Gallo, Anna Chiara
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 129 (03): : 257 - 268
  • [2] Periodic orbits for anisotropic perturbations of the Kepler problem
    Escalona-Buendia, A. H.
    Perez-Chavela, E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 591 - 601
  • [3] Periodic solutions of symmetric perturbations of the Kepler problem
    Cabral, H
    Vidal, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) : 76 - 88
  • [4] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [5] Periodic solutions of symmetric Kepler perturbations and applications
    Alberti, Angelo
    Vidal, Claudio
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) : 439 - 465
  • [6] Periodic solutions of symmetric Kepler perturbations and applications
    Angelo Alberti
    Claudio Vidal
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 439 - 465
  • [7] Perturbations of the Kepler Problem in Global Coordinates
    Bruno Cordani
    Celestial Mechanics and Dynamical Astronomy, 2000, 77 : 185 - 200
  • [8] Perturbations of the Kepler Problem in global coordinates
    Cordani, B
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (03): : 185 - 200
  • [9] Soliton perturbations and the random Kepler problem
    Abdullaev, FK
    Bronski, JC
    Papanicolaou, G
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (3-4) : 369 - 386
  • [10] Perturbations of the Kepler Problem in Global Coordinates: A Program
    Bruno Cordani
    Giorgio Merlini
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 313 - 319