Radial periodic perturbations of the Kepler problem

被引:0
|
作者
Alessandro Fonda
Anna Chiara Gallo
机构
[1] Università di Trieste,Dipartimento di Matematica e Geoscienze
关键词
Kepler problem; Periodic solutions; Radially symmetric systems; 34C25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider radial periodic perturbations of a central force field and prove the existence of rotating periodic solutions, whose orbits are nearly circular. The proof is mainly based on the Implicit Function Theorem, and it permits to handle some small perturbations involving the velocity, as well. Our results apply, in particular, to the classical Kepler problem.
引用
收藏
页码:257 / 268
页数:11
相关论文
共 50 条
  • [41] COORDINATE PERTURBATIONS FROM KEPLER ORBITS
    GEYLING, FT
    AIAA JOURNAL, 1963, 1 (08) : 1899 - 1901
  • [42] A periodic boundary value problem with switchings under nonlinear perturbations
    Benner, Peter
    Chuiko, Sergey
    Zuyev, Alexander
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [43] Nonlinear perturbations of a periodic elliptic problem with discontinuous nonlinearity in RN
    Alves, Claudianor O.
    Nascimento, Rubia G.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01): : 107 - 124
  • [44] Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors
    D. V. Turaev
    L. P. Shil’nikov
    Doklady Mathematics, 2008, 77 : 17 - 21
  • [45] A periodic boundary value problem with switchings under nonlinear perturbations
    Peter Benner
    Sergey Chuiko
    Alexander Zuyev
    Boundary Value Problems, 2023
  • [46] The periodic problem for curvature-like equations with asymmetric perturbations
    Obersnel, Franco
    Omari, Pierpaolo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (07) : 1923 - 1971
  • [47] Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors
    Turaev, D. V.
    Shil'nikov, L. P.
    DOKLADY MATHEMATICS, 2008, 77 (01) : 17 - 21
  • [48] Periodic Solutions of an Indefinite Singular Equation Arising from the Kepler Problem on the Sphere
    Hakl, Robert
    Zamora, Manuel
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (01): : 173 - 190
  • [49] Adiabatic radial perturbations of relativistic stars: Analytic solutions to an old problem
    Luz, Paulo
    Carloni, Sante
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [50] The Kepler Problem S‐Sphere and the Kepler Manifold
    M.D. Vivarelli
    Meccanica, 1998, 33 : 541 - 551