Foliation of the phase space for the Kepler problem with anisotropic perturbations

被引:0
|
作者
Criollo A. [1 ]
Pérez-Chavela E. [1 ]
机构
[1] Universidad Autónoma Metropolitana-Iztapala, Departamento de Matemáticas, Col. Vicentina, D.F., 09340
关键词
Angular and radial region; Anisotropic term;
D O I
10.1007/s12346-008-0025-y
中图分类号
学科分类号
摘要
We study a particular perturbation of the Kepler problem given by the potential U(r,θ)=-1/r-b/r2(1+∈cos2θ), where b and ε are the perturbation parameters. This problem has two first integrals in involution: the first one is the well known Hamiltonian H=(p2r+p2θ/r2)-1/r-b/r2(1+∈cos2θ); the second one is given by G=p2θ/2-b/(1+∈cos2θ). The sets H -1(h),G -1(g) and H-1(h){n-ary intersection}G-1(g) are invariant under the flow of the Hamiltonian system. From here we obtain a nice foliation of the phase space. In this paper we study the topology of the above foliation. © 2008 Birkhäuser Verlag Basel/Switzerland.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [42] MULTIFRACTAL MEASURES AND STABILITY ISLANDS IN THE ANISOTROPIC KEPLER-PROBLEM
    GUTZWILLER, MC
    PHYSICA D, 1989, 38 (1-3): : 160 - 171
  • [43] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Barutello, Vivina
    Terracini, Susanna
    Verzini, Gianmaria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (02) : 583 - 609
  • [44] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Iguchi, Shota
    Shibayama, Mitsuru
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (03):
  • [45] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Vivina Barutello
    Susanna Terracini
    Gianmaria Verzini
    Archive for Rational Mechanics and Analysis, 2013, 207 : 583 - 609
  • [46] EXPONENTIAL INSTABILITY OF COLLISION ORBIT IN THE ANISOTROPIC KEPLER-PROBLEM
    YOSHIDA, H
    CELESTIAL MECHANICS, 1987, 40 (01): : 51 - 66
  • [47] Realization of Anisotropic Diamagnetic Kepler Problem in a Solid State Environment
    Chen, Zhanghai
    Zhou, Weihang
    Zhang, Bo
    Yu, C. H.
    Zhu, Jingbing
    Lu, Wei
    Shen, S. C.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [48] A Stable Foliation to Infinity in the Phase Space of the Henon Map
    V. L. Chernov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2716 - 2720
  • [49] LUNI-SOLAR PERTURBATIONS IN EXTENDED PHASE SPACE REPRESENTATION OF VINTI PROBLEM
    KAUFMAN, B
    ALFRIEND, KT
    DASENBROCK, RR
    ACTA ASTRONAUTICA, 1978, 5 (10) : 727 - 744
  • [50] THE KEPLER CANONICAL TRANSFORMATIONS OF THE EXTENDED PHASE SPACE
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (01): : 117 - 127