On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

被引:0
|
作者
Elisa Alòs
Jorge A. León
Josep Vives
机构
[1] Universitat Pompeu Fabra,Dpt. d’Economia i Empresa
[2] CINVESTAV-IPN,Control Automático
[3] Universitat Autònoma de Barcelona,Dpt. de Matemàtiques
[4] Universitat de Barcelona,Dpt. Probabilitat, Lògica i Estadística
来源
Finance and Stochastics | 2007年 / 11卷
关键词
Black-Scholes formula; Derivative operator; Itô’s formula for the Skorohod integral; Jump-diffusion stochastic volatility model; G12; G13; 91B28; 91B70; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
引用
收藏
页码:571 / 589
页数:18
相关论文
共 50 条
  • [41] Equilibrium valuation of currency options under a jump-diffusion model with stochastic volatility
    Xing, Yu
    Yang, Xiaoping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 231 - 247
  • [42] Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility
    Ruan, Xinfeng
    Zhu, Wenli
    Li, Shuang
    Huang, Jiexiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [43] Recovering the Time-Dependent Volatility in Jump-Diffusion Models from Nonlocal Price Observations
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 507 - 514
  • [44] Pricing Discrete Barrier Options Under the Jump-Diffusion Model with Stochastic Volatility and Stochastic Intensity
    Duan, Pingtao
    Liu, Yuting
    Ma, Zhiming
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024, 12 (02) : 239 - 263
  • [45] A general jump-diffusion process to price volatility derivatives
    Yan, Cheng
    Zhao, Bo
    JOURNAL OF FUTURES MARKETS, 2019, 39 (01) : 15 - 37
  • [46] A time multidomain spectral method for valuing affine stochastic volatility and jump diffusion models
    Moutsinga, Claude Rodrigue Bambe
    Pindza, Edson
    Mare, Eben
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [47] Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models
    Pang, Hong-Kui
    Sun, Hai-Wei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (01) : 52 - 68
  • [48] Efficient pricing and hedging under the double Heston stochastic volatility jump-diffusion model
    Sun, Youfa
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2551 - 2574
  • [49] Jump-diffusion Stochastic Volatility Model for Estimating the Returns of GBP/CNY Exchange Rates
    Yang, Ruicheng
    Wang, Fenglei
    Xia, Bing
    2009 WASE INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING, ICIE 2009, VOL I, 2009, : 463 - +
  • [50] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    COMPLEXITY, 2020, 2020