Recovering the Time-Dependent Volatility in Jump-Diffusion Models from Nonlocal Price Observations

被引:0
|
作者
Georgiev, Slavi G. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Ruse, Dept Appl Math & Stat, FNSE, Ruse, Bulgaria
关键词
Jump-diffusion model; Implied volatility; Time-dependent inverse problem; Adjoint equation optimization; Nonlocal observation;
D O I
10.1007/978-3-030-97549-4_58
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is devoted to a recovery of time-dependent volatility under jump-diffusion processes assumption. The problem is formulated as an inverse problem: given nonlocal observations of European option prices, find a time-dependent volatility function such that the theoretical option prices match the observed ones in an optimal way with respect to a prescribed cost functional. We propose a variational adjoint equation approach to derive the gradients of the functionals. A finite difference formulation of the 1D inverse problem is discussed.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 50 条
  • [1] Computation of Time-Dependent Implied Volatility from Point Observations for European Options under Jump-Diffusion Models
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [2] Computation of the unknown volatility from integral option price observations in jump-diffusion models
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 591 - 608
  • [3] Recovering a Time-Dependent Diffusion Coefficient from Nonlocal Data
    Kabanikhin S.I.
    Shishlenin M.A.
    Numerical Analysis and Applications, 2018, 11 (1) : 38 - 44
  • [4] A general jump-diffusion process to price volatility derivatives
    Yan, Cheng
    Zhao, Bo
    JOURNAL OF FUTURES MARKETS, 2019, 39 (01) : 15 - 37
  • [5] On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility
    Elisa Alòs
    Jorge A. León
    Josep Vives
    Finance and Stochastics, 2007, 11 : 571 - 589
  • [6] On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility
    Alos, Elisa
    Leon, Jorge A.
    Vives, Josep
    FINANCE AND STOCHASTICS, 2007, 11 (04) : 571 - 589
  • [7] Recovering the Time-Dependent Volatility and Interest Rate in European Options from Nonlocal Price Measurements by Adjoint Equation Optimization
    Georgiev, Slavi G.
    Vulkov, Lubin G.
    ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, BGSIAM 2020, 2023, 1076 : 45 - 55
  • [8] BAYESIAN ESTIMATION OF STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODELS ON INTRADAY PRICE RETURNS
    Ficura, Milan
    Witzany, Jiri
    18TH AMSE: APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS, 2015,
  • [9] On the calibration of local jump-diffusion asset price models
    Kindermann, S.
    Mayer, P. A.
    FINANCE AND STOCHASTICS, 2011, 15 (04) : 685 - 724
  • [10] On the calibration of local jump-diffusion asset price models
    S. Kindermann
    P. A. Mayer
    Finance and Stochastics, 2011, 15 : 685 - 724