Recovering the Time-Dependent Volatility in Jump-Diffusion Models from Nonlocal Price Observations

被引:0
|
作者
Georgiev, Slavi G. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Ruse, Dept Appl Math & Stat, FNSE, Ruse, Bulgaria
关键词
Jump-diffusion model; Implied volatility; Time-dependent inverse problem; Adjoint equation optimization; Nonlocal observation;
D O I
10.1007/978-3-030-97549-4_58
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is devoted to a recovery of time-dependent volatility under jump-diffusion processes assumption. The problem is formulated as an inverse problem: given nonlocal observations of European option prices, find a time-dependent volatility function such that the theoretical option prices match the observed ones in an optimal way with respect to a prescribed cost functional. We propose a variational adjoint equation approach to derive the gradients of the functionals. A finite difference formulation of the 1D inverse problem is discussed.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 50 条
  • [21] Volatility regime switching and jump-diffusion process for prognosis: Case of equity price modeling
    Ghamlouch, H.
    Fouladirad, M.
    Grall, A.
    SAFETY AND RELIABILITY: METHODOLOGY AND APPLICATIONS, 2015, : 945 - 952
  • [22] Reweighted Nadaraya-Watson estimation of stochastic volatility jump-diffusion models
    Ji, Shaolin
    Zhu, Linlin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 352 - 360
  • [23] Computation of the Delta in Multidimensional Jump-Diffusion Setting with Applications to Stochastic Volatility Models
    Khedher, Asma
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (03) : 403 - 425
  • [24] Asymptotics for short maturity Asian options in jump-diffusion models with local volatility
    Pirjol, Dan
    Zhu, Lingjiong
    QUANTITATIVE FINANCE, 2024, 24 (3-4) : 433 - 449
  • [25] American put option pricing for stochastic-volatility, jump-diffusion models
    Hanson, Floyd B.
    Yan, Guoqing
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5915 - 5920
  • [26] Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity
    Figueroa-Lopez, Jose E.
    Luo, Yankeng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (12) : 4207 - 4245
  • [27] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [28] Long term analysis of oil price forecasting based on jump-diffusion models
    Zhang, Jin-Suo
    Jin, Hao
    Zou, Shao-Hui
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2015, 35 (01): : 67 - 74
  • [29] The risk-neutral stochastic volatility in interest rate models with jump-diffusion processes
    Gomez-Valle, L.
    Martinez-Rodriguez, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 : 49 - 61
  • [30] A Simulation and Empirical Study of the Maximum Likelihood Estimator for Stochastic Volatility Jump-Diffusion Models
    Begin, Jean-Francois
    Boudreault, Mathieu
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024,