On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

被引:0
|
作者
Elisa Alòs
Jorge A. León
Josep Vives
机构
[1] Universitat Pompeu Fabra,Dpt. d’Economia i Empresa
[2] CINVESTAV-IPN,Control Automático
[3] Universitat Autònoma de Barcelona,Dpt. de Matemàtiques
[4] Universitat de Barcelona,Dpt. Probabilitat, Lògica i Estadística
来源
Finance and Stochastics | 2007年 / 11卷
关键词
Black-Scholes formula; Derivative operator; Itô’s formula for the Skorohod integral; Jump-diffusion stochastic volatility model; G12; G13; 91B28; 91B70; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
引用
收藏
页码:571 / 589
页数:18
相关论文
共 50 条
  • [1] On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility
    Alos, Elisa
    Leon, Jorge A.
    Vives, Josep
    FINANCE AND STOCHASTICS, 2007, 11 (04) : 571 - 589
  • [2] Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility
    Medvedev, Alexey
    Scaillet, Olivier
    REVIEW OF FINANCIAL STUDIES, 2007, 20 (02): : 427 - 459
  • [3] SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LEVY MODELS
    Ekstrom, Erik
    Lu, Bing
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (04)
  • [4] The Weighted Variance Minimization in Jump-Diffusion Stochastic Volatility Models
    Gormin, Anatoly
    Kashtanov, Yuri
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 383 - 394
  • [5] The short-time behavior of VIX-implied volatilities in a multifactor stochastic volatility framework
    Barletta, Andrea
    Nicolato, Elisa
    Pagliarani, Stefano
    MATHEMATICAL FINANCE, 2019, 29 (03) : 928 - 966
  • [6] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Minoo Bakhshmohammadlou
    Rahman Farnoosh
    Mathematical Sciences, 2021, 15 : 337 - 343
  • [7] Importance sampling applied to Greeks for jump-diffusion models with stochastic volatility
    De Diego, Sergio
    Ferreira, Eva
    Nualart, Eulalia
    JOURNAL OF COMPUTATIONAL FINANCE, 2018, 22 (01) : 79 - 105
  • [8] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Bakhshmohammadlou, Minoo
    Farnoosh, Rahman
    MATHEMATICAL SCIENCES, 2021, 15 (04) : 337 - 343
  • [9] Reweighted Nadaraya-Watson estimation of stochastic volatility jump-diffusion models
    Ji, Shaolin
    Zhu, Linlin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 352 - 360
  • [10] American put option pricing for stochastic-volatility, jump-diffusion models
    Hanson, Floyd B.
    Yan, Guoqing
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5915 - 5920