On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

被引:0
|
作者
Elisa Alòs
Jorge A. León
Josep Vives
机构
[1] Universitat Pompeu Fabra,Dpt. d’Economia i Empresa
[2] CINVESTAV-IPN,Control Automático
[3] Universitat Autònoma de Barcelona,Dpt. de Matemàtiques
[4] Universitat de Barcelona,Dpt. Probabilitat, Lògica i Estadística
来源
Finance and Stochastics | 2007年 / 11卷
关键词
Black-Scholes formula; Derivative operator; Itô’s formula for the Skorohod integral; Jump-diffusion stochastic volatility model; G12; G13; 91B28; 91B70; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
引用
收藏
页码:571 / 589
页数:18
相关论文
共 50 条