On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

被引:0
|
作者
Elisa Alòs
Jorge A. León
Josep Vives
机构
[1] Universitat Pompeu Fabra,Dpt. d’Economia i Empresa
[2] CINVESTAV-IPN,Control Automático
[3] Universitat Autònoma de Barcelona,Dpt. de Matemàtiques
[4] Universitat de Barcelona,Dpt. Probabilitat, Lògica i Estadística
来源
Finance and Stochastics | 2007年 / 11卷
关键词
Black-Scholes formula; Derivative operator; Itô’s formula for the Skorohod integral; Jump-diffusion stochastic volatility model; G12; G13; 91B28; 91B70; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be a diffusion or a Markov process, as the examples in Sect. 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
引用
收藏
页码:571 / 589
页数:18
相关论文
共 50 条
  • [21] ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models
    Creel, Michael
    Kristensen, Dennis
    JOURNAL OF EMPIRICAL FINANCE, 2015, 31 : 85 - 108
  • [22] Decomposition of the option pricing formula for infinite activity jump-diffusion stochastic volatility models
    El-Khatib, Youssef
    Makumbe, Zororo S.
    Vives, Josep
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 231 : 276 - 293
  • [23] European option pricing under stochastic volatility jump-diffusion models with transaction cost
    Tian, Yingxu
    Zhang, Haoyan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2722 - 2741
  • [24] BAYESIAN ESTIMATION OF STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODELS ON INTRADAY PRICE RETURNS
    Ficura, Milan
    Witzany, Jiri
    18TH AMSE: APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS, 2015,
  • [25] Long memory version of stochastic volatility jump-diffusion model with stochastic intensity
    Fallah, Somayeh
    Mehrdoust, Farshid
    ESTUDIOS DE ECONOMIA APLICADA, 2020, 38 (02):
  • [26] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +
  • [27] Numerical approximation for options pricing of a stochastic volatility jump-diffusion model
    Aboulaich, R.
    Baghery, F.
    Jraifi, A.
    1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (50): : 69 - 82
  • [28] Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models
    Balajewicz, Maciej
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 198 - 204
  • [29] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660
  • [30] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333