On the index of the Diffie–Hellman mapping

被引:0
|
作者
Leyla Işık
Arne Winterhof
机构
[1] İstinye University,Johann Radon Institute for Computational and Applied Mathematics
[2] Mathematics Department,undefined
[3] Austrian Academy of Sciences,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Diffie–Hellman mapping; Cryptography; Cyclic groups; Index; Cyclotomic mappings; 11T06; 11T41; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x)x-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)x^{-r}$$\end{document} is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(γa)=γa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(\gamma ^a)=\gamma ^{a^2}$$\end{document}, a=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1,\ldots ,n-1$$\end{document}, and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(γa,γb)=γab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\gamma ^a,\gamma ^b)=\gamma ^{ab}$$\end{document}, a,b=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b=0,1,\ldots ,n-1$$\end{document}. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.
引用
收藏
页码:587 / 595
页数:8
相关论文
共 50 条
  • [41] Secure bilinear Diffie-Hellman bits
    Galbraith, SD
    Hopkins, HJ
    Shparlinski, IE
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2004, 3108 : 370 - 378
  • [42] The l-th power Diffie-Hellman problem and the l-th root Diffie-Hellman problem
    Roh, Dongyoung
    Kim, I-Yeol
    Hahn, Sang Geun
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (01) : 41 - 57
  • [43] A One Round Protocol for Tripartite Diffie–Hellman
    Antoine Joux
    Journal of Cryptology, 2004, 17 : 263 - 276
  • [44] The Twin Diffie-Hellman Problem and Applications
    Cash, David
    Kiltz, Eike
    Shoup, Victor
    JOURNAL OF CRYPTOLOGY, 2009, 22 (04) : 470 - 504
  • [45] The twin Diffie-Hellman problem and applications
    Cash, David
    Kiltz, Eike
    Shopup, Victor
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2008, 2008, 4965 : 127 - +
  • [46] An improvement of the Diffie-Hellman noncommutative protocol
    Roman'kov, Vitaly
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 139 - 153
  • [47] On the bit security of the Diffie-Hellman key
    Ian F. Blake
    Theo Garefalakis
    Igor E. Shparlinski
    Applicable Algebra in Engineering, Communication and Computing, 2006, 16 : 397 - 404
  • [48] On the bit security of the Diffie-Hellman key
    Blake, IF
    Garefalakis, T
    Shparlinski, IE
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2006, 16 (06) : 397 - 404
  • [49] Arithmetic Circuit Homomorphic Encryption Key Pairing Comparisons and Analysis between Elliptic Curve Diffie Hellman and Supersingular Isogeny Diffie Hellman
    Joshua, Wen Xin Khoo
    Justin, Xin Wei Teoh
    Yap, Chern Nam
    2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, : 138 - 142
  • [50] On Diffie-Hellman key agreement with short exponents
    vanOorschot, PC
    Wiener, MJ
    ADVANCES IN CRYPTOLOGY - EUROCRYPT '96, 1996, 1070 : 332 - 343