On the index of the Diffie–Hellman mapping

被引:0
|
作者
Leyla Işık
Arne Winterhof
机构
[1] İstinye University,Johann Radon Institute for Computational and Applied Mathematics
[2] Mathematics Department,undefined
[3] Austrian Academy of Sciences,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Diffie–Hellman mapping; Cryptography; Cyclic groups; Index; Cyclotomic mappings; 11T06; 11T41; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x)x-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)x^{-r}$$\end{document} is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(γa)=γa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(\gamma ^a)=\gamma ^{a^2}$$\end{document}, a=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1,\ldots ,n-1$$\end{document}, and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(γa,γb)=γab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\gamma ^a,\gamma ^b)=\gamma ^{ab}$$\end{document}, a,b=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b=0,1,\ldots ,n-1$$\end{document}. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.
引用
收藏
页码:587 / 595
页数:8
相关论文
共 50 条
  • [21] The Twin Diffie–Hellman Problem and Applications
    David Cash
    Eike Kiltz
    Victor Shoup
    Journal of Cryptology, 2009, 22 : 470 - 504
  • [22] On the distribution of the Diffie-Hellman pairs
    Shparlinski, IE
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (02) : 131 - 141
  • [23] An Alternative Diffie-Hellman Protocol
    Jarpe, Eric
    CRYPTOGRAPHY, 2020, 4 (01) : 1 - 10
  • [24] Variations of Diffie-Hellman problem
    Bao, F
    Deng, RH
    Zhu, HF
    INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS, 2003, 2836 : 301 - 312
  • [25] A Quantum Diffie-Hellman Protocol
    Subramaniam, Pranav
    Parakh, Abhishek
    2014 IEEE 11TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS), 2014, : 523 - 524
  • [26] An Algebraic Framework for Diffie–Hellman Assumptions
    Alex Escala
    Gottfried Herold
    Eike Kiltz
    Carla Ràfols
    Jorge Villar
    Journal of Cryptology, 2017, 30 : 242 - 288
  • [27] On the security of Diffie-Hellman bits
    Vasco, MIG
    Shparlinski, IE
    CRYPTOGRAPHY AND COMPUTATIONAL NUMBER THEORY, 2001, 20 : 257 - 268
  • [28] On the statistical properties of Diffie-Hellman distributions
    Canetti, R
    Friedlander, J
    Konyagin, S
    Larsen, M
    Lieman, D
    Shparlinski, I
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (1) : 23 - 46
  • [29] The Diffie-Hellman problem in Lie algebras
    Rafalska, Beata
    Rough Sets and Intelligent Systems Paradigms, Proceedings, 2007, 4585 : 622 - 629
  • [30] The performance of group Diffie-Hellman paradigms
    Hagzan, KS
    Bischof, HP
    ICWN'04 & PCC'04, VOLS, 1 AND 2, PROCEEDINGS, 2004, : 88 - 94