On the index of the Diffie–Hellman mapping

被引:0
|
作者
Leyla Işık
Arne Winterhof
机构
[1] İstinye University,Johann Radon Institute for Computational and Applied Mathematics
[2] Mathematics Department,undefined
[3] Austrian Academy of Sciences,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Diffie–Hellman mapping; Cryptography; Cyclic groups; Index; Cyclotomic mappings; 11T06; 11T41; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x)x-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)x^{-r}$$\end{document} is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(γa)=γa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(\gamma ^a)=\gamma ^{a^2}$$\end{document}, a=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1,\ldots ,n-1$$\end{document}, and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(γa,γb)=γab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\gamma ^a,\gamma ^b)=\gamma ^{ab}$$\end{document}, a,b=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b=0,1,\ldots ,n-1$$\end{document}. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.
引用
收藏
页码:587 / 595
页数:8
相关论文
共 50 条
  • [31] Decidability for Lightweight Diffie-Hellman Protocols
    Dougherty, Daniel J.
    Guttman, Joshua D.
    2014 IEEE 27TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2014, : 217 - 231
  • [32] The square root Diffie-Hellman problem
    Roh, Dongyoung
    Hahn, Sang Geun
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (02) : 179 - 187
  • [33] Diffie-Hellman Protocol as a Symmetric Cryptosystem
    Burda, Karel
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (07): : 33 - 37
  • [34] The Kernel Matrix Diffie-Hellman Assumption
    Morillo, Paz
    Rafols, Carla
    Villar, Jorge L.
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT I, 2016, 10031 : 729 - 758
  • [35] On the statistical properties of Diffie-Hellman distributions
    Ran Canetti
    John Friedlander
    Sergei Konyagin
    Michael Larsen
    Daniel Lieman
    Igor Shparlinski
    Israel Journal of Mathematics, 2000, 120 : 23 - 46
  • [36] On-The-Fly Diffie-Hellman for IoT
    Diaz Arancibia, Jaime
    Ferrari Smith, Vicente
    Lopez Fenner, Julio
    2019 38TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2019,
  • [37] Short exponent Diffie-Hellman problems
    Koshiba, T
    Kurosawa, K
    PUBLIC KEY CRYPTOGRAPHY - PKC 2004, PROCEEDINGS, 2004, 2947 : 173 - 186
  • [38] An Algebraic Framework for Diffie-Hellman Assumptions
    Escala, Alex
    Herold, Gottfried
    Kiltz, Eike
    Rafols, Carla
    Villar, Jorge
    ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT II, 2013, 8043 : 129 - 147
  • [39] An Algebraic Framework for Diffie-Hellman Assumptions
    Escala, Alex
    Herold, Gottfried
    Kiltz, Eike
    Rafols, Carla
    Villar, Jorge
    JOURNAL OF CRYPTOLOGY, 2017, 30 (01) : 242 - 288
  • [40] A Fast Diffie—Hellman Protocol in Genus 2
    N. P. Smart
    S. Siksek
    Journal of Cryptology, 1999, 12 : 67 - 73