On the index of the Diffie–Hellman mapping

被引:0
|
作者
Leyla Işık
Arne Winterhof
机构
[1] İstinye University,Johann Radon Institute for Computational and Applied Mathematics
[2] Mathematics Department,undefined
[3] Austrian Academy of Sciences,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Diffie–Hellman mapping; Cryptography; Cyclic groups; Index; Cyclotomic mappings; 11T06; 11T41; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x)x-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)x^{-r}$$\end{document} is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(γa)=γa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(\gamma ^a)=\gamma ^{a^2}$$\end{document}, a=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1,\ldots ,n-1$$\end{document}, and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(γa,γb)=γab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\gamma ^a,\gamma ^b)=\gamma ^{ab}$$\end{document}, a,b=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b=0,1,\ldots ,n-1$$\end{document}. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.
引用
收藏
页码:587 / 595
页数:8
相关论文
共 50 条
  • [11] On the interpolation of bivariate polynomials related to the Diffie-Hellman mapping
    Kiltz, E
    Winterhof, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (02) : 305 - 315
  • [12] The Diffie–Hellman Protocol
    Ueli M. Maurer
    Stefan Wolf
    Designs, Codes and Cryptography, 2000, 19 : 147 - 171
  • [13] Separating Decision Diffie–Hellman from Computational Diffie–Hellman in Cryptographic Groups
    Antoine Joux
    Kim Nguyen
    Journal of Cryptology, 2003, 16 : 239 - 247
  • [14] Diffie-Hellman to the rescue
    Tate, A
    DR DOBBS JOURNAL, 2001, 26 (06): : 12 - 12
  • [15] The Diffie-Hellman protocol
    Maurer, UM
    Wolf, S
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 19 (2-3) : 147 - 171
  • [16] Separating decision Diffie-Hellman from computational Diffie-Hellman in cryptographic groups
    Joux, A
    Nguyen, K
    JOURNAL OF CRYPTOLOGY, 2003, 16 (04) : 239 - 247
  • [17] The square root Diffie–Hellman problem
    Dongyoung Roh
    Sang Geun Hahn
    Designs, Codes and Cryptography, 2012, 62 : 179 - 187
  • [18] An improvement of the Diffie–Hellman noncommutative protocol
    Vitaly Roman’kov
    Designs, Codes and Cryptography, 2022, 90 : 139 - 153
  • [19] The group Diffie-Hellman problems
    Bresson, E
    Chevassut, O
    Pointcheval, D
    SELECTED AREAS IN CRYPTOGRAPHY, 2003, 2595 : 325 - 338
  • [20] The l-th power Diffie–Hellman problem and the l-th root Diffie–Hellman problem
    Dongyoung Roh
    I-Yeol Kim
    Sang Geun Hahn
    Applicable Algebra in Engineering, Communication and Computing, 2018, 29 : 41 - 57