On the index of the Diffie–Hellman mapping

被引:0
|
作者
Leyla Işık
Arne Winterhof
机构
[1] İstinye University,Johann Radon Institute for Computational and Applied Mathematics
[2] Mathematics Department,undefined
[3] Austrian Academy of Sciences,undefined
关键词
Diffie–Hellman mapping; Cryptography; Cyclic groups; Index; Cyclotomic mappings; 11T06; 11T41; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x)x-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)x^{-r}$$\end{document} is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(γa)=γa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(\gamma ^a)=\gamma ^{a^2}$$\end{document}, a=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1,\ldots ,n-1$$\end{document}, and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(γa,γb)=γab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(\gamma ^a,\gamma ^b)=\gamma ^{ab}$$\end{document}, a,b=0,1,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b=0,1,\ldots ,n-1$$\end{document}. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements.
引用
收藏
页码:587 / 595
页数:8
相关论文
共 50 条