Feedback-controlled dynamics of spiral waves in the complex Ginzburg–Landau equation

被引:1
|
作者
Guoyong Yuan
Hong Zhang
Xueli Wang
Guangrui Wang
Shaoying Chen
机构
[1] Hebei Normal University,Department of Physics
[2] Hebei Advanced Thin Films Laboratory,Scientific and Technical Department
[3] Institute of Applied Physics and Computational Mathematics,undefined
[4] Hulunbuir University,undefined
来源
Nonlinear Dynamics | 2017年 / 90卷
关键词
Chaos; Spiral wave; Ginzburg–Landau equation; Tip;
D O I
暂无
中图分类号
学科分类号
摘要
Spiral dynamics in the complex Ginzburg–Landau equation (CGLE) with a feedback control are studied. It is shown that the spiral tip follows a circular pathway centered at the measuring point after some transients. The attractor radius is a piecewise constant function of the initial distance between the spiral tip and the measuring point, and a piecewise linear increasing function of the time delay in the feedback loop. Many bumps or lobes can be formed from the circular attractor if the time delay becomes relatively long, and the tip path becomes complex. With an increase in the positive feedback gain, the attractor is not changed, but the drift velocity of the spiral tip along such an attractor is linearly increased. When the gain is negative, the tip is attracted to the measuring point from its initial position if the initial distance is relatively small. The variation of the scaling parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in CGLE initiates also transitions between attractors of different size, and the attractor radius is a piecewise function of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, where it is inversely proportional to a square root of the parameter on each piece. It is also demonstrated that the tip drift velocity has a power-law relation with μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and the wave speed. Some results can be understood by analyzing the drift direction of the spiral tip in the transient process.
引用
收藏
页码:2745 / 2753
页数:8
相关论文
共 50 条
  • [1] Feedback-controlled dynamics of spiral waves in the complex Ginzburg-Landau equation
    Yuan, Guoyong
    Zhang, Hong
    Wang, Xueli
    Wang, Guangrui
    Chen, Shaoying
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2745 - 2753
  • [2] FEEDBACK-CONTROLLED DYNAMICS OF MEANDERING SPIRAL WAVES
    GRILL, S
    ZYKOV, VS
    MULLER, SC
    PHYSICAL REVIEW LETTERS, 1995, 75 (18) : 3368 - 3371
  • [3] Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414 (414)
  • [4] Drift of Spiral Waves in Complex Ginzburg-Landau Equation
    YANG Jun-Zhong School of Science
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 647 - 652
  • [5] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [6] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [7] Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [9] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [10] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128