Feedback-controlled dynamics of spiral waves in the complex Ginzburg–Landau equation

被引:1
|
作者
Guoyong Yuan
Hong Zhang
Xueli Wang
Guangrui Wang
Shaoying Chen
机构
[1] Hebei Normal University,Department of Physics
[2] Hebei Advanced Thin Films Laboratory,Scientific and Technical Department
[3] Institute of Applied Physics and Computational Mathematics,undefined
[4] Hulunbuir University,undefined
来源
Nonlinear Dynamics | 2017年 / 90卷
关键词
Chaos; Spiral wave; Ginzburg–Landau equation; Tip;
D O I
暂无
中图分类号
学科分类号
摘要
Spiral dynamics in the complex Ginzburg–Landau equation (CGLE) with a feedback control are studied. It is shown that the spiral tip follows a circular pathway centered at the measuring point after some transients. The attractor radius is a piecewise constant function of the initial distance between the spiral tip and the measuring point, and a piecewise linear increasing function of the time delay in the feedback loop. Many bumps or lobes can be formed from the circular attractor if the time delay becomes relatively long, and the tip path becomes complex. With an increase in the positive feedback gain, the attractor is not changed, but the drift velocity of the spiral tip along such an attractor is linearly increased. When the gain is negative, the tip is attracted to the measuring point from its initial position if the initial distance is relatively small. The variation of the scaling parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in CGLE initiates also transitions between attractors of different size, and the attractor radius is a piecewise function of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, where it is inversely proportional to a square root of the parameter on each piece. It is also demonstrated that the tip drift velocity has a power-law relation with μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and the wave speed. Some results can be understood by analyzing the drift direction of the spiral tip in the transient process.
引用
收藏
页码:2745 / 2753
页数:8
相关论文
共 50 条
  • [21] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [22] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [23] Standing waves of the complex Ginzburg-Landau equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 26 - 32
  • [24] Pattern-Selective Feedback Stabilization of Ginzburg–Landau Spiral Waves
    Isabelle Schneider
    Babette de Wolff
    Jia-Yuan Dai
    Archive for Rational Mechanics and Analysis, 2022, 246 : 631 - 658
  • [25] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [26] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [27] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [28] Nonequilibrium dynamics in the complex Ginzburg-Landau equation
    Puri, S
    Das, SK
    Cross, MC
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [29] VORTEX DYNAMICS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MATSUOKA, C
    NOZAKI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1429 - 1432
  • [30] Response Functions of Spiral Wave Solutions of the Complex Ginzburg–Landau Equation
    I V Biktasheva
    V N Biktashev
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 28 - 34