Feedback-controlled dynamics of spiral waves in the complex Ginzburg–Landau equation

被引:1
|
作者
Guoyong Yuan
Hong Zhang
Xueli Wang
Guangrui Wang
Shaoying Chen
机构
[1] Hebei Normal University,Department of Physics
[2] Hebei Advanced Thin Films Laboratory,Scientific and Technical Department
[3] Institute of Applied Physics and Computational Mathematics,undefined
[4] Hulunbuir University,undefined
来源
Nonlinear Dynamics | 2017年 / 90卷
关键词
Chaos; Spiral wave; Ginzburg–Landau equation; Tip;
D O I
暂无
中图分类号
学科分类号
摘要
Spiral dynamics in the complex Ginzburg–Landau equation (CGLE) with a feedback control are studied. It is shown that the spiral tip follows a circular pathway centered at the measuring point after some transients. The attractor radius is a piecewise constant function of the initial distance between the spiral tip and the measuring point, and a piecewise linear increasing function of the time delay in the feedback loop. Many bumps or lobes can be formed from the circular attractor if the time delay becomes relatively long, and the tip path becomes complex. With an increase in the positive feedback gain, the attractor is not changed, but the drift velocity of the spiral tip along such an attractor is linearly increased. When the gain is negative, the tip is attracted to the measuring point from its initial position if the initial distance is relatively small. The variation of the scaling parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in CGLE initiates also transitions between attractors of different size, and the attractor radius is a piecewise function of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, where it is inversely proportional to a square root of the parameter on each piece. It is also demonstrated that the tip drift velocity has a power-law relation with μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and the wave speed. Some results can be understood by analyzing the drift direction of the spiral tip in the transient process.
引用
收藏
页码:2745 / 2753
页数:8
相关论文
共 50 条
  • [41] The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    CHAOS SOLITONS & FRACTALS, 2002, 13 (07) : 1377 - 1381
  • [42] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [43] Response functions of spiral wave solutions of the complex Ginzburg-Landau equation
    Biktasheva, IV
    Biktashev, VN
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 28 - 34
  • [44] Isolated Spiral Solutions of the Ginzburg-Landau Equation
    Guzman-Velazquez, Alexandra
    Ledesma-Duran, Aldo
    Fernandez, Joaquin Delgado
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (13):
  • [45] Dark soliton dynamics under the complex Ginzburg-Landau equation
    Horikis, Theodoros P.
    CHAOS SOLITONS & FRACTALS, 2015, 77 : 94 - 100
  • [46] Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation
    Montgomery, KA
    Silber, M
    NONLINEARITY, 2004, 17 (06) : 2225 - 2248
  • [47] Nonequilibrium dynamics of the complex Ginzburg-Landau equation: Analytical results
    Das, SK
    Puri, S
    Cross, MC
    PHYSICAL REVIEW E, 2001, 64 (04):
  • [48] LOW-DIMENSIONAL DYNAMICS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    RODRIGUEZ, JD
    SIROVICH, L
    PHYSICA D, 1990, 43 (01): : 77 - 86
  • [49] Dynamics of scroll wave filaments in the complex Ginzburg-Landau equation
    Gabbay, Michael
    Ott, Edward
    Guzdar, Parvez N.
    Physica D: Nonlinear Phenomena, 1998, 118 (3-4): : 371 - 395
  • [50] On the solitary wave dynamics of complex Ginzburg–Landau equation with cubic nonlinearity
    Fiza Batool
    Ghazala Akram
    Optical and Quantum Electronics, 2017, 49