Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation

被引:7
|
作者
Aguareles, M. [1 ]
Chapman, S. J. [2 ]
Witelski, T. [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Math Inst, OCIAM, Oxford OX1 3LB, England
关键词
D O I
10.1103/PhysRevLett.101.224101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [2] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [3] Drift of Spiral Waves in Complex Ginzburg-Landau Equation
    YANG Jun-Zhong School of Science
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 647 - 652
  • [5] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [6] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128
  • [7] Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    PHYSICAL REVIEW E, 1998, 57 (03): : 2656 - 2659
  • [8] Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414 (414)
  • [9] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [10] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631