Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation

被引:7
|
作者
Aguareles, M. [1 ]
Chapman, S. J. [2 ]
Witelski, T. [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Math Inst, OCIAM, Oxford OX1 3LB, England
关键词
D O I
10.1103/PhysRevLett.101.224101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [42] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [43] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [44] Extensive properties of the complex Ginzburg-Landau equation
    Collet, P
    Eckmann, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 699 - 722
  • [45] On the complex Ginzburg-Landau equation with a delayed feedback
    Casal, AC
    Díaz, JI
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01): : 1 - 17
  • [46] Transition to antispirals in the complex Ginzburg-Landau equation
    Wang, HL
    Ou-Yang, Q
    CHINESE PHYSICS LETTERS, 2004, 21 (08) : 1437 - 1440
  • [47] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [48] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [49] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [50] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):