Resonant drift of spiral waves in the complex Ginzburg-Landau equation

被引:14
|
作者
Biktasheva, IV [1 ]
Elkin, YE [1 ]
Biktashev, VN [1 ]
机构
[1] Inst Math Problems Biol, Pushchino 142292, Moscow Region, Russia
关键词
response functions; resonant drift; parametric drift; asymptotics; spiral waves; oscillatory medium; autowaves; reaction-diffusion system;
D O I
10.1023/A:1005134901624
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [1] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [2] Drift of Spiral Waves in Complex Ginzburg-Landau Equation
    YANG Jun-Zhong School of Science
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 647 - 652
  • [3] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [4] Drift of spiral waves in the complex Ginzburg-Landau equation due to media inhomogeneities
    Biktasheva, IV
    PHYSICAL REVIEW E, 2000, 62 (06): : 8800 - 8803
  • [5] Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation
    Zhang, SL
    Hu, BB
    Zhang, H
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [6] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [7] Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [9] Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    PHYSICAL REVIEW E, 1998, 57 (03): : 2656 - 2659
  • [10] Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414 (414)