Resonant drift of spiral waves in the complex Ginzburg-Landau equation

被引:14
|
作者
Biktasheva, IV [1 ]
Elkin, YE [1 ]
Biktashev, VN [1 ]
机构
[1] Inst Math Problems Biol, Pushchino 142292, Moscow Region, Russia
关键词
response functions; resonant drift; parametric drift; asymptotics; spiral waves; oscillatory medium; autowaves; reaction-diffusion system;
D O I
10.1023/A:1005134901624
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Weak periodic external perturbations of an autowave medium can cause large-distance directed motion of the spiral wave. This happens when the period of the perturbation coincides with, or is close to the rotation period of a spiral wave, or its multiple. Such motion is called resonant or parametric drift. It may be used for low-voltage defibrillation of heart tissue. Theory of the resonant drift exists, but so far was used only qualitatively. In this paper, we show good quantitative agreement of the theory with direct numerical simulations. This is done for Complex Ginzburg-Landau Equation, one of the simplest autowave models.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [21] Control spiral and multi-spiral wave in the complex Ginzburg-Landau equation
    Ma Jun
    Gao Ji-Hua
    Wang Chun-Ni
    Su Jun-Yan
    CHAOS SOLITONS & FRACTALS, 2008, 38 (02) : 521 - 530
  • [22] Isolated Spiral Solutions of the Ginzburg-Landau Equation
    Guzman-Velazquez, Alexandra
    Ledesma-Duran, Aldo
    Fernandez, Joaquin Delgado
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (13):
  • [23] The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    CHAOS SOLITONS & FRACTALS, 2002, 13 (07) : 1377 - 1381
  • [24] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [25] Response functions of spiral wave solutions of the complex Ginzburg-Landau equation
    Biktasheva, IV
    Biktashev, VN
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 28 - 34
  • [26] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446
  • [27] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [28] A COMPLEX GINZBURG-LANDAU EQUATION IN MAGNETISM
    ZUBRZYCKI, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 150 (02) : L143 - L145
  • [29] The complex Ginzburg-Landau equation: an introduction
    Garcia-Morales, Vladimir
    Krischer, Katharina
    CONTEMPORARY PHYSICS, 2012, 53 (02) : 79 - 95
  • [30] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720