Meixner laws;
Random projections;
Quadratic conditional moments;
Matrix ensembles;
Systems of PDEs;
Jack polynomials;
60B20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We construct a family of matrix ensembles that fits Anshelevich’s regression postulates for “Meixner laws on matrices,” namely the distribution with an invariance property of X when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{E}(\mathbf {X}^{2}|\mathbf {X}+\mathbf {Y})=a(\mathbf {X}+\mathbf {Y})^{2}+b(\mathbf {X}+\mathbf {Y})+c\mathbf {I}_{n}$\end{document} where X and Y are i.i.d. symmetric matrices of order n. We show that the Laplace transform of a general n×n Meixner matrix ensemble satisfies a system of partial differential equations which is explicitly solvable for n=2. We rely on these solutions to identify the six types of 2×2 Meixner matrix ensembles.