CHARACTERISTIC-POLYNOMIALS;
EIGENVALUE CORRELATIONS;
REAL MATRICES;
CIRCULAR LAW;
DISTRIBUTIONS;
MODELS;
D O I:
10.1088/1751-8113/42/38/385205
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The theory of zonal polynomials is used to compute the average of a Schur polynomial of argument AX, where A is a fixed matrix and X is from the real Ginibre ensemble. This generalizes a recent result of Sommers and Khoruzhenko (2009 J. Phys. A: Math. Theor. 42 222002), and furthermore allows analogous results to be obtained for the complex and real quaternion Ginibre ensembles. As applications, the positive integer moments of the general variance Ginibre ensembles are computed in terms of generalized hypergeometric functions; these are written in terms of averages over matrices of the same size as the moment to give duality formulas, and the averages of the power sums of the eigenvalues are expressed as finite sums of zonal polynomials.
机构:
Bielefeld Univ, Fac Phys, POB 100131, D-33501 Bielefeld, Germany
Royal Inst Technol KTH, Dept Math, Brinellvagen 8, S-11428 Stockholm, SwedenBielefeld Univ, Fac Phys, POB 100131, D-33501 Bielefeld, Germany
Akemann, Gernot
Forster, Yanik-Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Kings Coll London, Dept Math, London WC2R 2LS, EnglandBielefeld Univ, Fac Phys, POB 100131, D-33501 Bielefeld, Germany
Forster, Yanik-Pascal
Kieburg, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, AustraliaBielefeld Univ, Fac Phys, POB 100131, D-33501 Bielefeld, Germany