Matrix averages relating to Ginibre ensembles

被引:23
|
作者
Forrester, Peter J. [1 ]
Rains, Eric M. [2 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
澳大利亚研究理事会;
关键词
CHARACTERISTIC-POLYNOMIALS; EIGENVALUE CORRELATIONS; REAL MATRICES; CIRCULAR LAW; DISTRIBUTIONS; MODELS;
D O I
10.1088/1751-8113/42/38/385205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of zonal polynomials is used to compute the average of a Schur polynomial of argument AX, where A is a fixed matrix and X is from the real Ginibre ensemble. This generalizes a recent result of Sommers and Khoruzhenko (2009 J. Phys. A: Math. Theor. 42 222002), and furthermore allows analogous results to be obtained for the complex and real quaternion Ginibre ensembles. As applications, the positive integer moments of the general variance Ginibre ensembles are computed in terms of generalized hypergeometric functions; these are written in terms of averages over matrices of the same size as the moment to give duality formulas, and the averages of the power sums of the eigenvalues are expressed as finite sums of zonal polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Polyanalytic Ginibre Ensembles
    Haimi, Antti
    Hedenmalm, Haakan
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (01) : 10 - 47
  • [2] The Polyanalytic Ginibre Ensembles
    Antti Haimi
    Haakan Hedenmalm
    Journal of Statistical Physics, 2013, 153 : 10 - 47
  • [3] Schur function averages for the real Ginibre ensemble
    Sommers, Hans-Juergen
    Khoruzhenko, Boris A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)
  • [4] Order Statistics and Ginibre's Ensembles
    B. Rider
    Journal of Statistical Physics, 2004, 114 : 1139 - 1148
  • [5] Deformed Ginibre ensembles and integrable systems
    Orlov, A. Yu.
    PHYSICS LETTERS A, 2014, 378 (04) : 319 - 328
  • [6] Characteristic polynomials in real Ginibre ensembles
    Akemann, G.
    Phillips, M. J.
    Sommers, H-J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [7] Order statistics and Ginibre's ensembles
    Rider, B
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 1139 - 1148
  • [8] Hole Probabilities for Finite and Infinite Ginibre Ensembles
    Adhikari, Kartick
    Reddy, Nanda Kishore
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (21) : 6694 - 6730
  • [9] The Interpolating Airy Kernels for the and Elliptic Ginibre Ensembles
    Akemann, G.
    Phillips, M. J.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (03) : 421 - 465
  • [10] Universal eigenvector correlations in quaternionic Ginibre ensembles
    Akemann, Gernot
    Forster, Yanik-Pascal
    Kieburg, Mario
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (14)