Matrix averages relating to Ginibre ensembles

被引:23
|
作者
Forrester, Peter J. [1 ]
Rains, Eric M. [2 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
澳大利亚研究理事会;
关键词
CHARACTERISTIC-POLYNOMIALS; EIGENVALUE CORRELATIONS; REAL MATRICES; CIRCULAR LAW; DISTRIBUTIONS; MODELS;
D O I
10.1088/1751-8113/42/38/385205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of zonal polynomials is used to compute the average of a Schur polynomial of argument AX, where A is a fixed matrix and X is from the real Ginibre ensemble. This generalizes a recent result of Sommers and Khoruzhenko (2009 J. Phys. A: Math. Theor. 42 222002), and furthermore allows analogous results to be obtained for the complex and real quaternion Ginibre ensembles. As applications, the positive integer moments of the general variance Ginibre ensembles are computed in terms of generalized hypergeometric functions; these are written in terms of averages over matrices of the same size as the moment to give duality formulas, and the averages of the power sums of the eigenvalues are expressed as finite sums of zonal polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Averages of Products and Ratios of Characteristic Polynomials in Polynomial Ensembles
    Akemann, Gernot
    Strahov, Eugene
    Wurfel, Tim R.
    ANNALES HENRI POINCARE, 2020, 21 (12): : 3973 - 4002
  • [32] Beyond counts and averages: Relating geodiversity to dimensions of biodiversity
    Read, Quentin D.
    Zarnetske, Phoebe L.
    Record, Sydne
    Dahlin, Kyla M.
    Costanza, Jennifer K.
    Finley, Andrew O.
    Gaddis, Keith D.
    Grady, John M.
    Hobi, Martina L.
    Latimer, Andrew M.
    Malone, Sparkle L.
    Ollinger, Scott V.
    Pau, Stephanie
    Wilson, Adam M.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2020, 29 (04): : 696 - 710
  • [33] A note on mixed matrix moments for the complex Ginibre ensemble
    Walters, Meg
    Starr, Shannon
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [34] Meixner Matrix Ensembles
    Włodzimierz Bryc
    Gérard Letac
    Journal of Theoretical Probability, 2013, 26 : 107 - 152
  • [35] CLASS OF MATRIX ENSEMBLES
    DYSON, FJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (01) : 90 - &
  • [36] Meixner Matrix Ensembles
    Bryc, Wlodzimierz
    Letac, Gerard
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (01) : 107 - 152
  • [37] MATRIX WEIGHTED AVERAGES AND POSTERIOR BOUNDS
    CHAMBERLAIN, G
    LEAMER, EE
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1976, 38 (01): : 73 - 84
  • [38] Additive matrix convolutions of Polya ensembles and polynomial ensembles
    Kieburg, Mario
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [39] Annealed averages in spin and matrix models
    Foini, Laura
    Kurchan, Jorge
    SCIPOST PHYSICS, 2022, 12 (03):
  • [40] Integrals over the circular ensembles relating to classical domains
    Feng, Zhi Ming
    Song, Ji Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (32)