Meixner Matrix Ensembles

被引:0
|
作者
Włodzimierz Bryc
Gérard Letac
机构
[1] University of Cincinnati,Department of Mathematical Sciences
[2] Université Paul Sabatier,Laboratoire de Statistique et Probabilités
来源
关键词
Meixner laws; Random projections; Quadratic conditional moments; Matrix ensembles; Systems of PDEs; Jack polynomials; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of matrix ensembles that fits Anshelevich’s regression postulates for “Meixner laws on matrices,” namely the distribution with an invariance property of X when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{E}(\mathbf {X}^{2}|\mathbf {X}+\mathbf {Y})=a(\mathbf {X}+\mathbf {Y})^{2}+b(\mathbf {X}+\mathbf {Y})+c\mathbf {I}_{n}$\end{document} where X and Y are i.i.d. symmetric matrices of order n. We show that the Laplace transform of a general n×n Meixner matrix ensemble satisfies a system of partial differential equations which is explicitly solvable for n=2. We rely on these solutions to identify the six types of 2×2 Meixner matrix ensembles.
引用
收藏
页码:107 / 152
页数:45
相关论文
共 50 条
  • [31] Matrix kernels for the Gaussian orthogonal and symplectic ensembles
    Tracy, CA
    Widom, H
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2197 - 2207
  • [32] Linear statistics of matrix ensembles in classical background
    Min, Chao
    Chen, Yang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3758 - 3790
  • [33] About the spacing functions of the three matrix ensembles
    Mehta, ML
    Pandey, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04): : 1243 - 1251
  • [34] On the use of transition matrix methods with extended ensembles
    Escobedo, FA
    Abreu, CRA
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (10):
  • [35] On the Cartan decomposition for classical random matrix ensembles
    Edelman, Alan
    Jeong, Sungwoo
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (06)
  • [36] THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES
    FORRESTER, PJ
    NUCLEAR PHYSICS B, 1993, 402 (03) : 709 - 728
  • [37] Matrix Measures, Random Moments, and Gaussian Ensembles
    Dette, Holger
    Nagel, Jan
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (01) : 25 - 49
  • [38] Symmetry breaking study with random matrix ensembles
    Hussein, M. S.
    de Carvalho, J. X.
    Pato, M. P.
    Sargeant, A. J.
    NUCLEI AND MESOSCOPIC PHYSICS, 2008, 995 : 212 - +
  • [40] Intersection of unit balls in classical matrix ensembles
    Zakhar Kabluchko
    Joscha Prochno
    Christoph Thäle
    Israel Journal of Mathematics, 2020, 239 : 129 - 172