Meixner Matrix Ensembles

被引:0
|
作者
Włodzimierz Bryc
Gérard Letac
机构
[1] University of Cincinnati,Department of Mathematical Sciences
[2] Université Paul Sabatier,Laboratoire de Statistique et Probabilités
来源
关键词
Meixner laws; Random projections; Quadratic conditional moments; Matrix ensembles; Systems of PDEs; Jack polynomials; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of matrix ensembles that fits Anshelevich’s regression postulates for “Meixner laws on matrices,” namely the distribution with an invariance property of X when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{E}(\mathbf {X}^{2}|\mathbf {X}+\mathbf {Y})=a(\mathbf {X}+\mathbf {Y})^{2}+b(\mathbf {X}+\mathbf {Y})+c\mathbf {I}_{n}$\end{document} where X and Y are i.i.d. symmetric matrices of order n. We show that the Laplace transform of a general n×n Meixner matrix ensemble satisfies a system of partial differential equations which is explicitly solvable for n=2. We rely on these solutions to identify the six types of 2×2 Meixner matrix ensembles.
引用
收藏
页码:107 / 152
页数:45
相关论文
共 50 条
  • [41] Spacings in Orthogonal and Symplectic Random Matrix Ensembles
    Kristina Schubert
    Constructive Approximation, 2015, 42 : 481 - 518
  • [42] NONUNIVERSAL CORRELATIONS FOR RANDOM MATRIX-ENSEMBLES
    NAGAO, T
    SLEVIN, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (05) : 2075 - 2085
  • [43] Intersection of unit balls in classical matrix ensembles
    Kabluchko, Zakhar
    Prochno, Joscha
    Thaele, Christoph
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 239 (01) : 129 - 172
  • [44] DENSITY MATRIX DESCRIPTION OF STATISTICAL ENSEMBLES EXHAUSTIVE
    GHIRARDI, GC
    RIMINI, A
    WEBER, T
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 29 (01): : 135 - 158
  • [45] ERGODIC PROPERTIES OF RANDOM-MATRIX ENSEMBLES
    PANDEY, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 591 - 591
  • [46] Random matrix ensembles from nonextensive entropy
    Toscano, F
    Vallejos, RO
    Tsallis, C
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [47] On Undetected Error Probability of Binary Matrix Ensembles
    Wadayama, Tadashi
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1045 - 1049
  • [48] JT gravity and the ensembles of random matrix theory
    Stanford, Douglas
    Witten, Edward
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (06) : 1475 - 1680
  • [49] Poisson Statistics for Matrix Ensembles at Large Temperature
    Florent Benaych-Georges
    Sandrine Péché
    Journal of Statistical Physics, 2015, 161 : 633 - 656
  • [50] Edge fluctuations for random normal matrix ensembles
    Garcia-Zelada, David
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (04)