Meixner Matrix Ensembles

被引:0
|
作者
Włodzimierz Bryc
Gérard Letac
机构
[1] University of Cincinnati,Department of Mathematical Sciences
[2] Université Paul Sabatier,Laboratoire de Statistique et Probabilités
来源
关键词
Meixner laws; Random projections; Quadratic conditional moments; Matrix ensembles; Systems of PDEs; Jack polynomials; 60B20;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a family of matrix ensembles that fits Anshelevich’s regression postulates for “Meixner laws on matrices,” namely the distribution with an invariance property of X when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{E}(\mathbf {X}^{2}|\mathbf {X}+\mathbf {Y})=a(\mathbf {X}+\mathbf {Y})^{2}+b(\mathbf {X}+\mathbf {Y})+c\mathbf {I}_{n}$\end{document} where X and Y are i.i.d. symmetric matrices of order n. We show that the Laplace transform of a general n×n Meixner matrix ensemble satisfies a system of partial differential equations which is explicitly solvable for n=2. We rely on these solutions to identify the six types of 2×2 Meixner matrix ensembles.
引用
收藏
页码:107 / 152
页数:45
相关论文
共 50 条
  • [21] Field theory of Euclidean matrix ensembles
    Offer, CR
    Simons, BD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (42): : 7567 - 7583
  • [22] Thermodynamic relations of the Hermitian matrix ensembles
    Chen, Y
    Ismail, MEH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19): : 6633 - 6654
  • [23] Distribution of eigenvalues of certain matrix ensembles
    Bogomolny, E
    Bohigas, O
    Pato, MP
    PHYSICAL REVIEW E, 1997, 55 (06) : 6707 - 6718
  • [24] Family of generalized random matrix ensembles
    Bertuola, AC
    Bohigas, O
    Pato, MP
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [25] Hermitean matrix ensembles and orthogonal polynomials
    Chen, Y
    Ismail, MEH
    STUDIES IN APPLIED MATHEMATICS, 1998, 100 (01) : 33 - 52
  • [26] Duality in random matrix ensembles for all β
    Desrosiers, Patrick
    NUCLEAR PHYSICS B, 2009, 817 (03) : 224 - 251
  • [27] MULTIVARIABLE MEIXNER, KRAWTCHOUK, AND MEIXNER-POLLACZEK POLYNOMIALS
    TRATNIK, MV
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) : 2740 - 2749
  • [28] The β-Meixner model
    Ferreiro-Castilla, Albert
    Schoutens, Wim
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) : 2466 - 2476
  • [29] Fuzzy spaces and new random matrix ensembles
    Nair, V. P.
    Polychronakos, A. P.
    Tekel, J.
    PHYSICAL REVIEW D, 2012, 85 (04):
  • [30] Random matrix ensembles with split limiting behavior
    Burkhardt, Paula
    Cohen, Peter
    DeWitt, Jonathan
    Hlavacek, Max
    Miller, Steven J.
    Sprunger, Carsten
    Yen Nhi Truong Vu
    Van Peski, Roger
    Yang, Kevin
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2018, 7 (03)