A unified framework of constrained regression

被引:0
|
作者
Benjamin Hofner
Thomas Kneib
Torsten Hothorn
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Medizininformatik, Biometrie und Epidemiologie
[2] Georg-August-Universität Göttingen,Lehrstuhl für Statistik
[3] Abteilung Biostatistik,Institut für Epidemiologie, Biostatistik und Prävention
[4] Universität Zürich,undefined
来源
Statistics and Computing | 2016年 / 26卷
关键词
Bivariate constraints; Cyclic constraints; Functional gradient descent boosting; Generalized additive models; Monotonic constraints; Periodic effects ;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [41] CONSTRAINED SYSTEMS - A UNIFIED GEOMETRIC APPROACH
    GRACIA, X
    PONS, JM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (04) : 511 - 516
  • [42] Constrained regression model selection
    Li, Lexin
    Tsai, Chih-Ling
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 3939 - 3949
  • [43] The orthogonally constrained regression revisited
    Chu, MT
    Trendafilov, NT
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (04) : 746 - 771
  • [44] Linear regression constrained to a ball
    Stoica, P
    Ganesan, G
    DIGITAL SIGNAL PROCESSING, 2001, 11 (01) : 80 - 90
  • [45] Constrained clusterwise linear regression
    Plaia, A
    New Developments in Classification and Data Analysis, 2005, : 79 - 86
  • [46] Constrained sparse Galerkin regression
    Loiseau, Jean-Christophe
    Brunton, Steven L.
    JOURNAL OF FLUID MECHANICS, 2018, 838 : 42 - 67
  • [47] Constrained quantile regression and heteroskedasticity
    Amerise, Ilaria Lucrezia
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (02) : 344 - 356
  • [48] Constrained inference in linear regression
    Peiris, Thelge Buddika
    Bhattacharya, Bhaskar
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 151 : 133 - 150
  • [49] Constrained regression in satellite meteorology
    Crone, LJ
    McMillin, LM
    Crosby, DS
    JOURNAL OF APPLIED METEOROLOGY, 1996, 35 (11): : 2023 - 2035
  • [50] Compound Regression and Constrained Regression: Nonparametric Regression Frameworks for EIV Models
    Leng, Ling
    Zhu, Wei
    AMERICAN STATISTICIAN, 2020, 74 (03): : 226 - 232