A unified framework of constrained regression

被引:0
|
作者
Benjamin Hofner
Thomas Kneib
Torsten Hothorn
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Medizininformatik, Biometrie und Epidemiologie
[2] Georg-August-Universität Göttingen,Lehrstuhl für Statistik
[3] Abteilung Biostatistik,Institut für Epidemiologie, Biostatistik und Prävention
[4] Universität Zürich,undefined
来源
Statistics and Computing | 2016年 / 26卷
关键词
Bivariate constraints; Cyclic constraints; Functional gradient descent boosting; Generalized additive models; Monotonic constraints; Periodic effects ;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [21] INCREMENTAL SUBGRADIENTS FOR CONSTRAINED CONVEX OPTIMIZATION: A UNIFIED FRAMEWORK AND NEW METHODS
    Helou Neto, Elias Salomao
    De Pierro, Alvaro Rodolfo
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1547 - 1572
  • [22] A Unified Framework for Sparse Relaxed Regularized Regression: SR3
    Zheng, Peng
    Askham, Travis
    Brunton, Steven L.
    Kutz, J. Nathan
    Aravkin, Aleksandr Y.
    IEEE ACCESS, 2019, 7 : 1404 - 1423
  • [23] Unified distributed robust regression and variable selection framework for massive data
    Wang, Kangning
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [24] A unified active learning framework for annotating graph data for regression task
    Samoaa, Peter
    Aronsson, Linus
    Longa, Antonio
    Leitner, Philipp
    Chehreghani, Morteza Haghir
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [25] On the Choice of Difference Sequence in a Unified Framework for Variance Estimation in Nonparametric Regression
    Dai, Wenlin
    Tong, Tiejun
    Zhu, Lixing
    STATISTICAL SCIENCE, 2017, 32 (03) : 455 - 468
  • [26] A unified framework for contrast research of the latent variable multivariate regression methods
    He, Zhangming
    Zhou, Haiyin
    Wang, Jiongqi
    Zhai, Shouchao
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 143 : 136 - 145
  • [27] PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data
    Hoffman, Gabriel E.
    Logsdon, Benjamin A.
    Mezey, Jason G.
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (06)
  • [28] A Unified Framework for Joint Sensing and Communication in Resource Constrained Mobile Edge Networks
    Li, Xiaoqian
    Feng, Gang
    Sun, Yao
    Qin, Shuang
    Liu, Yijing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5643 - 5656
  • [29] A Unified Routing Framework for Resource-Constrained Mobile Ad Hoc Networks
    Zhang, Yupeng
    Hu, Shunkang
    Zhao, Zenghua
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1358 - 1363
  • [30] UNIFIED CONSTRAINED DYNAMICS
    BATALIN, IA
    TYUTIN, IV
    PHYSICS LETTERS B, 1993, 317 (03) : 354 - 358