A unified framework of constrained regression

被引:0
|
作者
Benjamin Hofner
Thomas Kneib
Torsten Hothorn
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Medizininformatik, Biometrie und Epidemiologie
[2] Georg-August-Universität Göttingen,Lehrstuhl für Statistik
[3] Abteilung Biostatistik,Institut für Epidemiologie, Biostatistik und Prävention
[4] Universität Zürich,undefined
来源
Statistics and Computing | 2016年 / 26卷
关键词
Bivariate constraints; Cyclic constraints; Functional gradient descent boosting; Generalized additive models; Monotonic constraints; Periodic effects ;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [31] Accumulations of Projections-A Unified Framework for Random Sketches in Kernel Ridge Regression
    Chen, Yifan
    Yang, Yun
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [32] Weighted sparse simplex representation: a unified framework for subspace clustering, constrained clustering, and active learning
    Peng, Hankui
    Pavlidis, Nicos G.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (03) : 958 - 986
  • [33] UNIFY: A unified policy designing framework for solving integrated Constrained Optimization and Machine Learning problems
    Silvestri, Mattia
    De Filippo, Allegra
    Lombardi, Michele
    Milano, Michela
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [34] A Unified Framework for Guiding Generative AI With Wireless Perception in Resource Constrained Mobile Edge Networks
    Wang, Jiacheng
    Du, Hongyang
    Niyato, Dusit
    Kang, Jiawen
    Xiong, Zehui
    Rajan, Deepu
    Mao, Shiwen
    Shen, Xuemin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10344 - 10360
  • [35] Weighted sparse simplex representation: a unified framework for subspace clustering, constrained clustering, and active learning
    Hankui Peng
    Nicos G. Pavlidis
    Data Mining and Knowledge Discovery, 2022, 36 : 958 - 986
  • [36] CONSTRAINED OPTIMUM REGRESSION
    BEALE, EML
    HUTCHINS.PC
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1974, 23 (02): : 208 - 210
  • [37] A unified framework for bivariate clustering and regression problems via mixed-integer linear programming
    Warwicker, John Alasdair
    Rebennack, Steffen
    DISCRETE APPLIED MATHEMATICS, 2023, 336 : 15 - 36
  • [38] Unified Communication Framework
    Gaisbauer, Dominic
    Bai, Yunpeng
    Huber, Stefan
    Konorov, Igor
    Levit, Dymitro
    Paul, Stephan
    Steffen, Dominik
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (10) : 2761 - 2764
  • [39] Unified Communication Framework
    Gaisbauer, Dominic
    Bai, Yunpeng
    Huber, Stefan
    Konorov, Igor
    Levit, Dymitro
    Paul, Stephan
    Steffen, Dominik
    2016 IEEE-NPSS REAL TIME CONFERENCE (RT), 2016,
  • [40] A unified framework for metaheuristics
    Branke, J
    Stein, M
    Schmeck, H
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT II, PROCEEDINGS, 2003, 2724 : 1568 - 1569