Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

被引:3
|
作者
Hedy Attouch
Alexandre Cabot
机构
[1] Université Montpellier,Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS
[2] Université Bourgogne Franche-Comté,Institut de Mathématiques de Bourgogne, UMR 5584 CNRS
来源
关键词
Structured monotone inclusions; Inertial forward–backward algorithms; Cocoercive operators; Relaxation; Convergence rate; Inertial Krasnoselskii–Mann iteration; Nash equilibration; 49M37; 65K05; 65K10; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form Ax+Bx∋0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax + Bx \ni 0$$\end{document} where A:H→2H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}$$\end{document} is a maximally monotone operator and B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:{{\mathcal {H}}}\rightarrow {{\mathcal {H}}}$$\end{document} is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.
引用
收藏
页码:547 / 598
页数:51
相关论文
共 50 条
  • [31] Stochastic Forward–Backward Splitting for Monotone Inclusions
    Lorenzo Rosasco
    Silvia Villa
    Bang Công Vũ
    Journal of Optimization Theory and Applications, 2016, 169 : 388 - 406
  • [32] Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1135 - 1152
  • [33] Convergence of an inertial reflected-forward-backward splitting algorithm for solving monotone inclusion problems with application to image recovery
    Izuchukwu, Chinedu
    Reich, Simeon
    Shehu, Yekini
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
  • [34] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [35] A relaxed-inertial forward-backward-forward algorithm for stochastic generalized Nash equilibrium seeking
    Cui, Shisheng
    Franci, Barbara
    Grammatico, Sergio
    Shanbhag, Uday, V
    Staudigl, Mathias
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 197 - 202
  • [36] FORWARD-BACKWARD SPLITTING WITH DEVIATIONS FOR MONOTONE INCLUSIONS
    Sadeghi H.
    Banert S.
    Giselsson P.
    Applied Set-Valued Analysis and Optimization, 2024, 6 (02): : 113 - 135
  • [37] Stochastic Forward-Backward Splitting for Monotone Inclusions
    Rosasco, Lorenzo
    Villa, Silvia
    Vu, Bang Cong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (02) : 388 - 406
  • [38] Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusions
    Duong Viet Thong
    Prasit Cholamjiak
    Computational and Applied Mathematics, 2019, 38
  • [39] Multi-step inertial forward-backward-half forward algorithm for solving monotone inclusion
    Zong, Chunxiang
    Zhang, Guofeng
    Tang, Yuchao
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (04): : 631 - 661
  • [40] Convergence Results of a New Monotone Inertial Forward-Backward Splitting Algorithm Under the Local Holder Error Bound Condition
    Wang, Ting
    Liu, Hongwei
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (02):