Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

被引:3
|
作者
Hedy Attouch
Alexandre Cabot
机构
[1] Université Montpellier,Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS
[2] Université Bourgogne Franche-Comté,Institut de Mathématiques de Bourgogne, UMR 5584 CNRS
来源
关键词
Structured monotone inclusions; Inertial forward–backward algorithms; Cocoercive operators; Relaxation; Convergence rate; Inertial Krasnoselskii–Mann iteration; Nash equilibration; 49M37; 65K05; 65K10; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form Ax+Bx∋0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax + Bx \ni 0$$\end{document} where A:H→2H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}$$\end{document} is a maximally monotone operator and B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:{{\mathcal {H}}}\rightarrow {{\mathcal {H}}}$$\end{document} is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.
引用
收藏
页码:547 / 598
页数:51
相关论文
共 50 条
  • [21] FORWARD-BACKWARD-HALF FORWARD ALGORITHM FOR SOLVING MONOTONE INCLUSIONS
    Briceno-Arias, Luis M.
    Davis, Damek
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2839 - 2871
  • [22] Forward-backward-forward algorithms involving two inertial terms for monotone inclusions
    Suantai, Suthep
    Inkrong, Papatsara
    Cholamjiak, Prasit
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [23] Backward-forward algorithms for structured monotone inclusions in Hilbert spaces
    Attouch, Hedy
    Peypouquet, Juan
    Redont, Patrick
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1095 - 1117
  • [24] A simple regularized forward-backward-forward dynamical system for structured monotone inclusions
    Anh, Pham Ky
    Hai, Trinh Ngoc
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (04):
  • [25] Correction: A simple regularized forward–backward–forward dynamical system for structured monotone inclusions
    Pham Ky Anh
    Trinh Ngoc Hai
    Computational and Applied Mathematics, 2025, 44 (5)
  • [26] Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
    Chidume C.E.
    Adamu A.
    Nnakwe M.O.
    Fixed Point Theory and Applications, 2020 (1)
  • [27] Inertial viscosity forward-backward splitting algorithm for monotone inclusions and its application to image restoration problems
    Kitkuan, Duangkamon
    Kumam, Poom
    Martinez-Moreno, Juan
    Sitthithakerngkiet, Kanokwan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 482 - 497
  • [28] On Regularized Forward-Backward Dynamical Systems Associated with Structured Monotone Inclusions
    Pham Ky Anh
    Trinh Ngoc Hai
    VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (02) : 545 - 562
  • [29] On Regularized Forward-Backward Dynamical Systems Associated with Structured Monotone Inclusions
    Pham Ky Anh
    Trinh Ngoc Hai
    Vietnam Journal of Mathematics, 2023, 51 : 545 - 562
  • [30] An alternated inertial algorithm with weak and linear convergence for solving monotone inclusions
    Tan, Bing
    Qin, Xiaolong
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2023, 8 (02) : 321 - 345