Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured Monotone Inclusions

被引:3
|
作者
Hedy Attouch
Alexandre Cabot
机构
[1] Université Montpellier,Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS
[2] Université Bourgogne Franche-Comté,Institut de Mathématiques de Bourgogne, UMR 5584 CNRS
来源
关键词
Structured monotone inclusions; Inertial forward–backward algorithms; Cocoercive operators; Relaxation; Convergence rate; Inertial Krasnoselskii–Mann iteration; Nash equilibration; 49M37; 65K05; 65K10; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {H}}}$$\end{document}, we study the convergence properties of a class of relaxed inertial forward–backward algorithms. They aim to solve structured monotone inclusions of the form Ax+Bx∋0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax + Bx \ni 0$$\end{document} where A:H→2H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:{{\mathcal {H}}}\rightarrow 2^{{\mathcal {H}}}$$\end{document} is a maximally monotone operator and B:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B:{{\mathcal {H}}}\rightarrow {{\mathcal {H}}}$$\end{document} is a cocoercive operator. We extend to this class of problems the acceleration techniques initially introduced by Nesterov, then developed by Beck and Teboulle in the case of structured convex minimization (FISTA). As an important element of our approach, we develop an inertial and parametric version of the Krasnoselskii–Mann theorem, where joint adjustment of the inertia and relaxation parameters plays a central role. This study comes as a natural extension of the techniques introduced by the authors for the study of relaxed inertial proximal algorithms. An illustration is given to the inertial Nash equilibration of a game combining non-cooperative and cooperative aspects.
引用
收藏
页码:547 / 598
页数:51
相关论文
共 50 条