Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions

被引:10
|
作者
Fan, Jingjing [1 ]
Qin, Xiaolong [2 ]
Tan, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
Inertial algorithm; Monotone inclusion; Shadow Douglas-Rachford splitting algorithm; Three-operator splitting; STEEPEST-DESCENT METHOD; FEASIBILITY PROBLEMS;
D O I
10.1080/01630563.2021.2001749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inertial shadow Douglas-Rachford splitting algorithm for finding zeros of the sum of monotone operators is proposed in Hilbert spaces. Moreover, a three-operator splitting algorithm for solving a class of monotone inclusion problems is also concerned. The weak convergence of the algorithms is investigated under mild assumptions. Some numerical experiments are implemented to illustrate our main convergence results.
引用
收藏
页码:1627 / 1644
页数:18
相关论文
共 50 条
  • [1] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [2] Shadow Douglas–Rachford Splitting for Monotone Inclusions
    Ernö Robert Csetnek
    Yura Malitsky
    Matthew K. Tam
    Applied Mathematics & Optimization, 2019, 80 : 665 - 678
  • [3] Inertial Douglas-Rachford splitting for monotone inclusion problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Hendrich, Christopher
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 472 - 487
  • [4] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [5] Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclusions
    Adly, S.
    Le, B. K.
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2861 - 2878
  • [6] Weak and Strong Convergence of Split Douglas-Rachford Algorithms for Monotone Inclusions
    Lv, Tianqi
    Xu, Hong-Kun
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (03) : 805 - 817
  • [7] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [8] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [9] CONVERGENCE ANALYSIS OF THE RELAXED DOUGLAS-RACHFORD ALGORITHM
    Luke, D. Russell
    Martins, Anna-Lena
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 542 - 584
  • [10] On the convergence rate of Douglas-Rachford operator splitting method
    He, Bingsheng
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2015, 153 (02) : 715 - 722