Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions

被引:10
|
作者
Fan, Jingjing [1 ]
Qin, Xiaolong [2 ]
Tan, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
Inertial algorithm; Monotone inclusion; Shadow Douglas-Rachford splitting algorithm; Three-operator splitting; STEEPEST-DESCENT METHOD; FEASIBILITY PROBLEMS;
D O I
10.1080/01630563.2021.2001749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inertial shadow Douglas-Rachford splitting algorithm for finding zeros of the sum of monotone operators is proposed in Hilbert spaces. Moreover, a three-operator splitting algorithm for solving a class of monotone inclusion problems is also concerned. The weak convergence of the algorithms is investigated under mild assumptions. Some numerical experiments are implemented to illustrate our main convergence results.
引用
收藏
页码:1627 / 1644
页数:18
相关论文
共 50 条
  • [41] A Partially Inertial Customized Douglas-Rachford Splitting Method for a Class of Structured Optimization Problems
    Qu, Yunfei
    He, Hongjin
    Han, Deren
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [42] An inertial Douglas–Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    Concurrency and Computation: Practice and Experience, 2023, 35 (17):
  • [43] Removing Multiplicative Noise by Douglas-Rachford Splitting Methods
    G. Steidl
    T. Teuber
    Journal of Mathematical Imaging and Vision, 2010, 36 : 168 - 184
  • [44] Removing Multiplicative Noise by Douglas-Rachford Splitting Methods
    Steidl, G.
    Teuber, T.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 36 (02) : 168 - 184
  • [45] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [46] Douglas-Rachford splitting and ADMM for pathological convex optimization
    Ryu, Ernest K.
    Liu, Yanli
    Yin, Wotao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (03) : 747 - 778
  • [47] CONVERGENCE ANALYSIS OF DOUGLAS-RACHFORD SPLITTING METHOD FOR "STRONGLY plus WEAKLY" CONVEX PROGRAMMING
    Guo, Ke
    Han, Deren
    Yuan, Xiaoming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1549 - 1577
  • [48] A simplified proof of weak convergence in Douglas-Rachford method
    Svaiter, Benar F.
    OPERATIONS RESEARCH LETTERS, 2019, 47 (04) : 291 - 293
  • [49] A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints
    Han, Deren
    He, Hongjin
    Yang, Hai
    Yuan, Xiaoming
    NUMERISCHE MATHEMATIK, 2014, 127 (01) : 167 - 200
  • [50] Accelerated ADMM based on Accelerated Douglas-Rachford Splitting
    Pejcic, Ivan
    Jones, Colin N.
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1952 - 1957