Computing the Ramanujan tau function

被引:0
|
作者
Denis Xavier Charles
机构
[1] University of Wisconsin-Madison,Department of Computer Science
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
Ramanujan tau function; Selberg Trace formula; Algorithms; Generalized Riemann Hypothesis;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Ramanujan tau function τ(n) can be computed by a randomized algorithm that runs in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{1}{2}+\varepsilon}$$\end{document} for every O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) assuming the Generalized Riemann Hypothesis. The same method also yields a deterministic algorithm that runs in time O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) (without any assumptions) for every ε > 0 to compute τ(n). Previous algorithms to compute τ(n) require Ω(n) time.
引用
收藏
页码:221 / 224
页数:3
相关论文
共 50 条
  • [21] A central limit theorem for Ramanujan's tau function
    Elliott, P. D. T. A.
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 145 - 161
  • [22] AN OMEGA-THEOREM FOR RAMANUJAN TAU-FUNCTION
    BALASUBRAMANIAN, R
    MURTY, MR
    INVENTIONES MATHEMATICAE, 1982, 68 (02) : 241 - 252
  • [23] A heat kernel associated to Ramanujan's tau function
    Hafner, JL
    Stopple, J
    RAMANUJAN JOURNAL, 2000, 4 (02): : 123 - 128
  • [24] ON ZAGIERS CUSP FORM AND THE RAMANUJAN TAU-FUNCTION
    HASHIM, A
    MURTY, MR
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (01): : 93 - 98
  • [25] RAMANUJAN’S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (03): : 69 - 80
  • [26] Some identities related to Ramanujan's tau function
    Robbins, N
    ARS COMBINATORIA, 2001, 60 : 219 - 224
  • [27] Even values of Ramanujan's tau-function
    Balakrishnan, Jennifer S.
    Ono, Ken
    Tsai, Wei-Lun
    arXiv, 2021,
  • [28] A central limit theorem for Ramanujan’s tau function
    P. D. T. A. Elliott
    The Ramanujan Journal, 2012, 29 : 145 - 161
  • [29] Even Values of Ramanujan’s Tau-Function
    Balakrishnan J.S.
    Ono K.
    Tsai W.-L.
    La Matematica, 2022, 1 (2): : 395 - 403
  • [30] THE 4TH MOMENT OF RAMANUJAN TAU-FUNCTION
    MORENO, CJ
    SHAHIDI, F
    MATHEMATISCHE ANNALEN, 1983, 266 (02) : 233 - 239