A heat kernel associated to Ramanujan's tau function

被引:11
|
作者
Hafner, JL
Stopple, J
机构
[1] IBM Corp, Almaden Res Ctr, San Hose, CA 93120 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
RAMANUJAN JOURNAL | 2000年 / 4卷 / 02期
关键词
Riemann zeta function; Ramanujan tau function; heat kernel; spectral zeta functions;
D O I
10.1023/A:1009886102576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Zagier, that the inverse Mellin transform of the symmetric square L-function attached to Ramanujan's tau function has an asymptotic expansion in terms of the zeros of the Riemann function.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] A Heat Kernel Associated to Ramanujan's Tau Function
    James Lee Hafner
    Jeffrey Stopple
    The Ramanujan Journal, 2000, 4 : 123 - 128
  • [2] On Ramanujan's tau function
    Ewell, JA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 453 - 461
  • [3] Historical Remark on Ramanujan's Tau Function
    Williams, Kenneth S.
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (01): : 30 - 35
  • [4] Combinatorial interpretations of Ramanujan's tau function
    Garvan, Frank
    Schlosser, Michael J.
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2831 - 2840
  • [5] New representations of Ramanujan's tau function
    Ewell, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) : 723 - 726
  • [6] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80
  • [7] A note on Ramanujan's arithmetical function tau(n)
    Wilton, JR
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1929, 25 : 121 - 129
  • [8] Note on Ramanujan's arithmetical function tau(n).
    Hardy, GH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1927, 23 : 675 - 680
  • [9] A central limit theorem for Ramanujan's tau function
    Elliott, P. D. T. A.
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 145 - 161
  • [10] Some identities related to Ramanujan's tau function
    Robbins, N
    ARS COMBINATORIA, 2001, 60 : 219 - 224