Ramanujan tau function;
Selberg Trace formula;
Algorithms;
Generalized Riemann Hypothesis;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the Ramanujan tau function τ(n) can be computed by a randomized algorithm that runs in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{1}{2}+\varepsilon}$$\end{document} for every O(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) assuming the Generalized Riemann Hypothesis. The same method also yields a deterministic algorithm that runs in time O(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) (without any assumptions) for every ε > 0 to compute τ(n). Previous algorithms to compute τ(n) require Ω(n) time.
机构:
Department of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, TorinoDepartment of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino
Cerruti U.
Murru N.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, TorinoDepartment of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino
机构:
Department of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino,10123, ItalyDepartment of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino,10123, Italy
Cerruti, Umberto
Murru, Nadir
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino,10123, ItalyDepartment of Mathematics G. Peano, University of Turin, Via Carlo Alberto 10, Torino,10123, Italy