Ramanujan tau function;
Selberg Trace formula;
Algorithms;
Generalized Riemann Hypothesis;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the Ramanujan tau function τ(n) can be computed by a randomized algorithm that runs in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{1}{2}+\varepsilon}$$\end{document} for every O(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) assuming the Generalized Riemann Hypothesis. The same method also yields a deterministic algorithm that runs in time O(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) (without any assumptions) for every ε > 0 to compute τ(n). Previous algorithms to compute τ(n) require Ω(n) time.