Odd values of the Ramanujan tau function

被引:0
|
作者
Michael A. Bennett
Adela Gherga
Vandita Patel
Samir Siksek
机构
[1] University of British Columbia,Department of Mathematics
[2] University of Warwick,Mathematics Institute
[3] University of Manchester,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 382卷
关键词
Primary 11D61; Secondary 11D41; 11F80; 11F41;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a number of results regarding odd values of the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function. For example, we prove the existence of an effectively computable positive constant κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} such that if τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document} is odd and n≥25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 25$$\end{document} then either P(τ(n))>κ·logloglognloglogloglogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P(\tau (n)) \; > \; \kappa \cdot \frac{\log \log \log {n}}{\log \log \log \log {n}} \end{aligned}$$\end{document}or there exists a prime p∣n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \mid n$$\end{document} with τ(p)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (p)=0$$\end{document}. Here P(m) denotes the largest prime factor of m. We also solve the equation τ(n)=±3b15b27b311b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)=\pm 3^{b_1} 5^{b_2} 7^{b_3} 11^{b_4}$$\end{document} and the equations τ(n)=±qb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)=\pm q^b$$\end{document} where 3≤q<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le q < 100$$\end{document} is prime and the exponents are arbitrary nonnegative integers. We make use of a variety of methods, including the Primitive Divisor Theorem of Bilu, Hanrot and Voutier, bounds for solutions to Thue–Mahler equations due to Bugeaud and Győry, and the modular approach via Galois representations of Frey–Hellegouarch elliptic curves.
引用
收藏
页码:203 / 238
页数:35
相关论文
共 50 条
  • [1] Odd values of the Ramanujan tau function
    Bennett, Michael A.
    Gherga, Adela
    Patel, Vandita
    Siksek, Samir
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 203 - 238
  • [2] Odd prime values of the Ramanujan tau function
    Nik Lygeros
    Olivier Rozier
    The Ramanujan Journal, 2013, 32 : 269 - 280
  • [3] Odd prime values of the Ramanujan tau function
    Lygeros, Nik
    Rozier, Olivier
    RAMANUJAN JOURNAL, 2013, 32 (02): : 269 - 280
  • [4] ODD VALUES OF THE RAMANUJAN TAU-FUNCTION
    MURTY, MR
    MURTY, VK
    SHOREY, TN
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1987, 115 (03): : 391 - 395
  • [5] Even values of Ramanujan's tau-function
    Balakrishnan, Jennifer S.
    Ono, Ken
    Tsai, Wei-Lun
    arXiv, 2021,
  • [6] Even Values of Ramanujan’s Tau-Function
    Balakrishnan J.S.
    Ono K.
    Tsai W.-L.
    La Matematica, 2022, 1 (2): : 395 - 403
  • [7] On values of Ramanujan’s tau function involving two prime factors
    Wenwen Lin
    Wenjun Ma
    The Ramanujan Journal, 2024, 63 : 131 - 155
  • [8] On values of Ramanujan's tau function involving two prime factors
    Lin, Wenwen
    Ma, Wenjun
    RAMANUJAN JOURNAL, 2024, 63 (01): : 131 - 155
  • [9] Computing the Ramanujan tau function
    Charles, Denis Xavier
    RAMANUJAN JOURNAL, 2006, 11 (02): : 221 - 224
  • [10] Computing the Ramanujan tau function
    Denis Xavier Charles
    The Ramanujan Journal, 2006, 11 : 221 - 224