Odd values of the Ramanujan tau function

被引:0
|
作者
Michael A. Bennett
Adela Gherga
Vandita Patel
Samir Siksek
机构
[1] University of British Columbia,Department of Mathematics
[2] University of Warwick,Mathematics Institute
[3] University of Manchester,Department of Mathematics
来源
Mathematische Annalen | 2022年 / 382卷
关键词
Primary 11D61; Secondary 11D41; 11F80; 11F41;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a number of results regarding odd values of the Ramanujan τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-function. For example, we prove the existence of an effectively computable positive constant κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} such that if τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document} is odd and n≥25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 25$$\end{document} then either P(τ(n))>κ·logloglognloglogloglogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P(\tau (n)) \; > \; \kappa \cdot \frac{\log \log \log {n}}{\log \log \log \log {n}} \end{aligned}$$\end{document}or there exists a prime p∣n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \mid n$$\end{document} with τ(p)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (p)=0$$\end{document}. Here P(m) denotes the largest prime factor of m. We also solve the equation τ(n)=±3b15b27b311b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)=\pm 3^{b_1} 5^{b_2} 7^{b_3} 11^{b_4}$$\end{document} and the equations τ(n)=±qb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)=\pm q^b$$\end{document} where 3≤q<100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le q < 100$$\end{document} is prime and the exponents are arbitrary nonnegative integers. We make use of a variety of methods, including the Primitive Divisor Theorem of Bilu, Hanrot and Voutier, bounds for solutions to Thue–Mahler equations due to Bugeaud and Győry, and the modular approach via Galois representations of Frey–Hellegouarch elliptic curves.
引用
收藏
页码:203 / 238
页数:35
相关论文
共 50 条
  • [21] MULTIPLICATIVE FUNCTIONS AND RAMANUJAN TAU-FUNCTION
    ELLIOTT, PDTA
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1981, 30 (APR): : 461 - 468
  • [22] A DIRICHLET CHARACTER ANALOGUE OF RAMANUJAN’S FORMULA FOR ODD ZETA VALUES
    Gupta, Anushree
    Jamal, M.D. Kashif
    Karak, Nilmoni
    Maji, Bibekananda
    arXiv, 2023,
  • [23] A Dirichlet character analogue of Ramanujan's formula for odd zeta values
    Gupta, Anushree
    Jamal, Md Kashif
    Karak, Nilmoni
    Maji, Bibekananda
    ADVANCES IN APPLIED MATHEMATICS, 2024, 158
  • [24] Hurwitz zeta functions and Ramanujan's identity for odd zeta values
    Chavan, Parth
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [25] Recent developments pertaining to Ramanujan's formula for odd zeta values
    Dixit, Atul
    EXPOSITIONES MATHEMATICAE, 2024, 42 (05)
  • [26] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80
  • [27] A note on Ramanujan's arithmetical function tau(n)
    Wilton, JR
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1929, 25 : 121 - 129
  • [28] A Heat Kernel Associated to Ramanujan's Tau Function
    James Lee Hafner
    Jeffrey Stopple
    The Ramanujan Journal, 2000, 4 : 123 - 128
  • [29] Note on Ramanujan's arithmetical function tau(n).
    Hardy, GH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1927, 23 : 675 - 680
  • [30] A CONGRUENCE PROPERTY OF RAMANUJAN FUNCTION-TAU(N)
    BAMBAH, RP
    CHOWLA, S
    GUPTA, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (08) : 766 - 767