Computing the Ramanujan tau function

被引:0
|
作者
Denis Xavier Charles
机构
[1] University of Wisconsin-Madison,Department of Computer Science
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
Ramanujan tau function; Selberg Trace formula; Algorithms; Generalized Riemann Hypothesis;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Ramanujan tau function τ(n) can be computed by a randomized algorithm that runs in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{1}{2}+\varepsilon}$$\end{document} for every O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) assuming the Generalized Riemann Hypothesis. The same method also yields a deterministic algorithm that runs in time O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\frac{3}{4}+\varepsilon}$$\end{document}) (without any assumptions) for every ε > 0 to compute τ(n). Previous algorithms to compute τ(n) require Ω(n) time.
引用
收藏
页码:221 / 224
页数:3
相关论文
共 50 条
  • [1] Computing the Ramanujan tau function
    Charles, Denis Xavier
    RAMANUJAN JOURNAL, 2006, 11 (02): : 221 - 224
  • [2] On Ramanujan's tau function
    Ewell, JA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 453 - 461
  • [3] Odd values of the Ramanujan tau function
    Michael A. Bennett
    Adela Gherga
    Vandita Patel
    Samir Siksek
    Mathematische Annalen, 2022, 382 : 203 - 238
  • [4] A FORMULA FOR RAMANUJAN TAU-FUNCTION
    EWELL, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (01) : 37 - 40
  • [5] Odd values of the Ramanujan tau function
    Bennett, Michael A.
    Gherga, Adela
    Patel, Vandita
    Siksek, Samir
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 203 - 238
  • [6] Historical Remark on Ramanujan's Tau Function
    Williams, Kenneth S.
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (01): : 30 - 35
  • [7] Odd prime values of the Ramanujan tau function
    Nik Lygeros
    Olivier Rozier
    The Ramanujan Journal, 2013, 32 : 269 - 280
  • [8] NONVANISHING OF THE RAMANUJAN TAU FUNCTION IN SHORT INTERVALS
    Alkan, Emre
    Zaharescu, Alexandru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (01) : 45 - 51
  • [9] THE VANISHING OF RAMANUJAN FUNCTION-TAU(N)
    LEHMER, DH
    DUKE MATHEMATICAL JOURNAL, 1947, 14 (02) : 429 - 433
  • [10] Combinatorial interpretations of Ramanujan's tau function
    Garvan, Frank
    Schlosser, Michael J.
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2831 - 2840