A central limit theorem for Ramanujan’s tau function

被引:0
|
作者
P. D. T. A. Elliott
机构
[1] University of Colorado at Boulder,Department of Mathematics
来源
The Ramanujan Journal | 2012年 / 29卷
关键词
Ramanujan tau function; Modular function; Central limit theorem; 11F11; 11F30; 11N60; 11N36; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
A central limit theorem is established for the absolute value of the modular Fourier-coefficient function defined by Ramanujan, and for that of the error term in the formula counting representations of integers as sums of twenty-four squares, in which the function appears.
引用
收藏
页码:145 / 161
页数:16
相关论文
共 50 条
  • [11] Note on Ramanujan's arithmetical function tau(n).
    Hardy, GH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1927, 23 : 675 - 680
  • [12] A heat kernel associated to Ramanujan's tau function
    Hafner, JL
    Stopple, J
    RAMANUJAN JOURNAL, 2000, 4 (02): : 123 - 128
  • [13] RAMANUJAN’S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (03): : 69 - 80
  • [14] Some identities related to Ramanujan's tau function
    Robbins, N
    ARS COMBINATORIA, 2001, 60 : 219 - 224
  • [15] Even values of Ramanujan's tau-function
    Balakrishnan, Jennifer S.
    Ono, Ken
    Tsai, Wei-Lun
    arXiv, 2021,
  • [16] Even Values of Ramanujan’s Tau-Function
    Balakrishnan J.S.
    Ono K.
    Tsai W.-L.
    La Matematica, 2022, 1 (2): : 395 - 403
  • [17] Computing the Ramanujan tau function
    Charles, Denis Xavier
    RAMANUJAN JOURNAL, 2006, 11 (02): : 221 - 224
  • [18] Computing the Ramanujan tau function
    Denis Xavier Charles
    The Ramanujan Journal, 2006, 11 : 221 - 224
  • [19] A generalization of Knopp's Observation on Ramanujan's tau-function
    Pribitkin, Wladimir de Azevedo
    RAMANUJAN JOURNAL, 2016, 41 (1-3): : 519 - 542
  • [20] A generalization of Knopp’s Observation on Ramanujan’s tau-function
    Wladimir de Azevedo Pribitkin
    The Ramanujan Journal, 2016, 41 : 519 - 542