A central limit theorem for Ramanujan’s tau function

被引:0
|
作者
P. D. T. A. Elliott
机构
[1] University of Colorado at Boulder,Department of Mathematics
来源
The Ramanujan Journal | 2012年 / 29卷
关键词
Ramanujan tau function; Modular function; Central limit theorem; 11F11; 11F30; 11N60; 11N36; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
A central limit theorem is established for the absolute value of the modular Fourier-coefficient function defined by Ramanujan, and for that of the error term in the formula counting representations of integers as sums of twenty-four squares, in which the function appears.
引用
收藏
页码:145 / 161
页数:16
相关论文
共 50 条
  • [31] On values of Ramanujan's tau function involving two prime factors
    Lin, Wenwen
    Ma, Wenjun
    RAMANUJAN JOURNAL, 2024, 63 (01): : 131 - 155
  • [32] A FREQUENCY-FUNCTION FORM OF THE CENTRAL LIMIT THEOREM
    SMITH, WL
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (03): : 462 - 472
  • [33] THE CENTRAL LIMIT THEOREM FOR ITERATED FUNCTION SYSTEMS ON THE CIRCLE
    Szarek, Tomasz
    Zdunik, Anna
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (01) : 175 - 190
  • [34] On the universal A.S. central limit theorem
    S. Hörmann
    Acta Mathematica Hungarica, 2007, 116 : 377 - 398
  • [35] On Shige Peng's central limit theorem
    Krylov, N. V.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1426 - 1434
  • [36] Ramanujan’s Master Theorem
    Tewodros Amdeberhan
    Olivier Espinosa
    Ivan Gonzalez
    Marshall Harrison
    Victor H. Moll
    Armin Straub
    The Ramanujan Journal, 2012, 29 : 103 - 120
  • [37] Ramanujan's Master Theorem
    Amdeberhan, Tewodros
    Espinosa, Olivier
    Gonzalez, Ivan
    Harrison, Marshall
    Moll, Victor H.
    Straub, Armin
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 103 - 120
  • [38] OMEGA THEOREM FOR ARITHMETIC RAMANUJAN FUNCTION
    JORIS, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (04): : 295 - &
  • [39] Odd prime values of the Ramanujan tau function
    Nik Lygeros
    Olivier Rozier
    The Ramanujan Journal, 2013, 32 : 269 - 280
  • [40] NONVANISHING OF THE RAMANUJAN TAU FUNCTION IN SHORT INTERVALS
    Alkan, Emre
    Zaharescu, Alexandru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (01) : 45 - 51