On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers

被引:0
|
作者
Mohand O. Hernane
Salah Eddine Rihane
Safia Seffah
Alain Togbé
机构
[1] Université des Sciences et de la Technologie Houari Boumadienne,Mathematics Institute
[2] University Center of Mila,Department of Mathematics, Institute of Science and Technology
[3] Purdue University Northwest,Department of Mathematics and Statistics
关键词
-Fibonacci numbers; Fermat numbers; Mersenne numbers; Linear form in logarithms; Reduction method; 11B39; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an integer. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequence. For this sequence, the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is the sum of the preceding k terms. The goal of this paper is to investigate the Fermat and Mersenne numbers having representation as product of two k-Fibonacci numbers.
引用
收藏
相关论文
共 50 条
  • [41] On k-Fibonacci hybrid numbers and their matrix representations
    Aydin, Fugen Torunbalci
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (04) : 257 - 266
  • [42] Catalan Identity for the k-Fibonacci Numbers Solution
    Smith, Jason L.
    FIBONACCI QUARTERLY, 2019, 57 (02): : 177 - 178
  • [43] k-FIBONACCI NUMBERS CLOSE TO A POWER OF 2
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    QUAESTIONES MATHEMATICAE, 2021, 44 (12) : 1681 - 1690
  • [44] On k-Fibonacci Numbers with Applications to Continued Fractions
    Rabago, Julius Fergy T.
    2015 INTERNATIONAL CONFERENCE ON MATHEMATICS, ITS APPLICATIONS, AND MATHEMATICS EDUCATION (ICMAME 2015), 2016, 693
  • [45] k-Fibonacci numbers and k-Lucas numbers and associated bipartite graphs
    Lee, Gwangyeon
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 884 - 893
  • [46] Catalan Identity for the k-Fibonacci Numbers Proposal
    Plaza, Angel
    Falcon, Sergio
    FIBONACCI QUARTERLY, 2019, 57 (02): : 177 - 177
  • [47] Dual-complex k-Fibonacci numbers
    Aydin, Fugen Torunbalci
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 1 - 6
  • [48] On Relationship Among a New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers
    Ozkan, Engin
    Altun, Ipek
    Gocer, Ali Aykut
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (04): : 1744 - 1750
  • [49] Some Infinite Sums Related to the k-Fibonacci Numbers
    Karaoglu, Onur
    Uslu, Kemal
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 651 - 659
  • [50] Pillai's problem with k-Fibonacci and Pell numbers
    Bravo, Jhon J.
    Diaz, Maribel
    Gomez, Carlos A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (10) : 1434 - 1455