On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers

被引:0
|
作者
Mohand O. Hernane
Salah Eddine Rihane
Safia Seffah
Alain Togbé
机构
[1] Université des Sciences et de la Technologie Houari Boumadienne,Mathematics Institute
[2] University Center of Mila,Department of Mathematics, Institute of Science and Technology
[3] Purdue University Northwest,Department of Mathematics and Statistics
关键词
-Fibonacci numbers; Fermat numbers; Mersenne numbers; Linear form in logarithms; Reduction method; 11B39; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an integer. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequence. For this sequence, the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is the sum of the preceding k terms. The goal of this paper is to investigate the Fermat and Mersenne numbers having representation as product of two k-Fibonacci numbers.
引用
收藏
相关论文
共 50 条
  • [21] k-Fibonacci numbers which are Padovan or Perrin numbers
    Salah Eddine Rihane
    Alain Togbé
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 568 - 582
  • [22] On prime factors of the sum of two k-Fibonacci numbers
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (04) : 1171 - 1195
  • [23] MERSENNE AND FERMAT NUMBERS
    ROBINSON, RM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (05) : 842 - 846
  • [24] k-Fibonacci numbers which are Padovan or Perrin numbers
    Rihane, Salah Eddine
    Togbe, Alain
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 568 - 582
  • [25] On generalized bicomplex k-Fibonacci numbers
    Yagmur, Tulay
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (04) : 123 - 133
  • [26] On k-Fibonacci numbers of arithmetic indexes
    Falcon, Sergio
    Plaza, Angel
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 180 - 185
  • [27] ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 535 - 547
  • [28] A new family of k-Fibonacci numbers
    El-Mikkawy, Moawwad
    Sogabe, Tomohiro
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4456 - 4461
  • [29] The relations among k-Fibonacci, k-Lucas and generalized k-Fibonacci numbers and the spectral norms of the matrices of involving these numbers
    Uslu, K.
    Taskara, N.
    Uygun, S.
    ARS COMBINATORIA, 2011, 102 : 183 - 192
  • [30] Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers
    Shevelev, Vladimir
    Garcia-Pulgarin, Gilberto
    Miguel Velasquez-Soto, Juan
    Castillo, John H.
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (07)