-Fibonacci numbers;
Fermat numbers;
Mersenne numbers;
Linear form in logarithms;
Reduction method;
11B39;
11J86;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 2$$\end{document} be an integer. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequence. For this sequence, the first k terms are 0,…,0,1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is the sum of the preceding k terms. The goal of this paper is to investigate the Fermat and Mersenne numbers having representation as product of two k-Fibonacci numbers.
机构:
UNAM Juriquilla, Math Inst, Santiago De Queretaro 76230, Queretaro De Ar, Mexico
Univ Witwatersrand, Sch Math, Johannesburg, South AfricaUniv Cauca, Dept Matemat, Popayan, Cauca, Colombia