On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers

被引:0
|
作者
Mohand O. Hernane
Salah Eddine Rihane
Safia Seffah
Alain Togbé
机构
[1] Université des Sciences et de la Technologie Houari Boumadienne,Mathematics Institute
[2] University Center of Mila,Department of Mathematics, Institute of Science and Technology
[3] Purdue University Northwest,Department of Mathematics and Statistics
关键词
-Fibonacci numbers; Fermat numbers; Mersenne numbers; Linear form in logarithms; Reduction method; 11B39; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} be an integer. A generalization of the well-known Fibonacci sequence is the k-Fibonacci sequence. For this sequence, the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and each term afterwards is the sum of the preceding k terms. The goal of this paper is to investigate the Fermat and Mersenne numbers having representation as product of two k-Fibonacci numbers.
引用
收藏
相关论文
共 50 条
  • [31] Diophantine equation with weighted k-Fibonacci numbers
    Gueth, K.
    Szalay, L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 48 - 62
  • [32] Polynomials whose coefficients are k-Fibonacci numbers
    Mansour, Toufik
    Shattuck, Mark
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 40 : 57 - 76
  • [33] On Starlike Functions Connected with k-Fibonacci Numbers
    Ozgur, Nihal Yilmaz
    Sokol, Janusz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 249 - 258
  • [34] A DIOPHANTINE EQUATION IN k-FIBONACCI NUMBERS AND REPDIGITS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 299 - 315
  • [35] An exponential equation involving k-Fibonacci numbers
    Gueye, Alioune
    Rihane, Salah Eddine
    Togbe, Alain
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2664 - 2677
  • [36] The Generalized k-Fibonacci and k-Lucas Numbers
    Uslu, K.
    Taskara, N.
    Kose, H.
    ARS COMBINATORIA, 2011, 99 : 25 - 32
  • [37] GENERALIZED FERMAT AND MERSENNE NUMBERS
    LIGH, S
    JONES, P
    FIBONACCI QUARTERLY, 1982, 20 (01): : 12 - 16
  • [38] Binomial Transform of the Generalized k-Fibonacci Numbers
    Falcon, Sergio
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 643 - 651
  • [39] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366
  • [40] k-Fibonacci and k-Lucas numbers as (l, m)-antipalindromic numbers
    Brahmi, Adel
    Mokhtar, Ahmed Ait
    Rihane, Salah Eddine
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02):