Snarks with Special Spanning Trees

被引:0
|
作者
Arthur Hoffmann-Ostenhof
Thomas Jatschka
机构
[1] Technische Universität Wien,Institute of Logic and Computation
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)∪E(C)=E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cup E(C) = E(G)$$\end{document} and E(T)∩E(C)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cap E(C) = \emptyset $$\end{document}. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:12
相关论文
共 50 条
  • [1] Snarks with Special Spanning Trees
    Hoffmann-Ostenhof, Arthur
    Jatschka, Thomas
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 207 - 219
  • [2] Independent Spanning Trees on Special BC Networks
    Cheng, Baolei
    Fan, Jianxi
    Yang, Jiwen
    Wang, Yan
    Zhang, Shukui
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 3301 - 3305
  • [3] Special classes of snarks
    Cavicchioli, A
    Murgolo, TE
    Ruini, B
    Spaggiari, F
    ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (01) : 57 - 88
  • [4] Special Classes of Snarks
    A. Cavicchioli
    T. E. Murgolo
    B. Ruini
    F. Spaggiari
    Acta Applicandae Mathematica, 2003, 76 : 57 - 88
  • [5] Generating formulas of the number of spanning trees of some special graphs
    S. N. Daoud
    The European Physical Journal Plus, 129
  • [6] Generating formulas of the number of spanning trees of some special graphs
    Daoud, S. N.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (07):
  • [7] Spanning Trees
    Akiyama, Jin
    Kano, Mikio
    FACTORS AND FACTORIZATIONS OF GRAPHS: PROOF TECHNIQUES IN FACTOR THEORY, 2011, 2031 : 295 - 336
  • [8] SPANNING TREES
    不详
    JOURNAL OF HUMANISTIC MATHEMATICS, 2021, 11 (02): : 481 - 482
  • [9] From Spanning Trees to Meshed Trees
    Acharya, H. B.
    Hamilton, John
    Shenoy, Nirmala
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [10] Spanning Trees: A Survey
    Kenta Ozeki
    Tomoki Yamashita
    Graphs and Combinatorics, 2011, 27 : 1 - 26