Snarks with Special Spanning Trees

被引:0
|
作者
Arthur Hoffmann-Ostenhof
Thomas Jatschka
机构
[1] Technische Universität Wien,Institute of Logic and Computation
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Cubic graph; Snark; Spanning tree; Hist; 3-Edge coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)∪E(C)=E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cup E(C) = E(G)$$\end{document} and E(T)∩E(C)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(T) \cap E(C) = \emptyset $$\end{document}. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
引用
收藏
页码:207 / 219
页数:12
相关论文
共 50 条
  • [21] TRANSFORMATIONS ON SPANNING TREES
    CAHIT, I
    CAHIT, R
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (03): : 353 - 358
  • [22] Compatible spanning trees
    Garcia, Alfredo
    Huemer, Clemens
    Hurtado, Ferran
    Tejel, Javier
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (05): : 563 - 584
  • [23] Spanning Trees: A Survey
    Ozeki, Kenta
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 1 - 26
  • [24] Packing of rigid spanning subgraphs and spanning trees
    Cheriyan, Joseph
    de Gevigney, Olivier Durand
    Szigeti, Zoltan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 17 - 25
  • [25] End-faithful spanning trees in graphs without normal spanning trees
    Buerger, Carl
    Kurkofka, Jan
    JOURNAL OF GRAPH THEORY, 2022, 101 (01) : 95 - 105
  • [26] Almost disjoint spanning trees: Relaxing the conditions for completely independent spanning trees
    Darties, Benoit
    Gastineau, Nicolas
    Togni, Olivier
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 124 - 136
  • [27] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [28] Spanning trees and spanning closed walks with small degrees
    Hasanvand, Morteza
    DISCRETE MATHEMATICS, 2022, 345 (10)
  • [29] Spanning trees and spanning Eulerian subgraphs with small degrees
    Hasanvand, Morteza
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1317 - 1321
  • [30] Rooted Spanning Trees in Tournaments
    Xiaoyun Lu
    Da-Wei Wang
    Jiaofeng Pan
    C. K. Wong
    Graphs and Combinatorics, 2000, 16 : 411 - 427