Let G be a cubic graph which has a decomposition into a spanning tree T and a 2-regular subgraph C, i.e. E(T)∪E(C)=E(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E(T) \cup E(C) = E(G)$$\end{document} and E(T)∩E(C)=∅\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E(T) \cap E(C) = \emptyset $$\end{document}. We provide an answer to the following question: which lengths can the cycles of C have if G is a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two) and that every cubic graph with a hist has the above decomposition.
机构:
Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, Kanagawa 2520373, Japan
Ozeki, Kenta
Yamashita, Tomoki
论文数: 0引用数: 0
h-index: 0
机构:
Kitasato Univ, Coll Liberal Arts & Sci, Minami Ku, Kanagawa 2520373, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, Kanagawa 2520373, Japan